Класс: GeneralizedLinearMixedModel
Вектор отклика обобщенной линейной модели смешанных эффектов
[
также возвращает биномиальный размер, сопоставленный с каждым элементом y
,binomialsize
]
= response(glme
)y
если условное распределение отклика, заданное как случайные эффекты, биномиально.
glme
- Обобщенная линейная модель смешанных эффектовGeneralizedLinearMixedModel
объектОбобщенная модель линейных смешанных эффектов, заданная как GeneralizedLinearMixedModel
объект. Для свойств и методов этого объекта смотрите GeneralizedLinearMixedModel
.
y
- Значения откликаЗначения отклика, заданные как n -by-1 вектор, где n - количество наблюдений.
Для i наблюдений с предыдущими весами wip и ni биномиального размера (когда применимо), значения yi отклика могут иметь следующие значения.
Распределение | Допустимые значения | Примечания |
---|---|---|
Binomial |
| wip и ni целочисленные значения > 0 |
Poisson |
| wip является целым числом значения > 0 |
Gamma | (0,∞) | wip ≥ 0 |
InverseGaussian | (0,∞) | wip ≥ 0 |
normal | (-∞,∞) | wip ≥ 0 |
Вы можете получить доступ к свойству предыдущих весов wip использование записи через точку. Для примера получить доступ к свойству предыдущих весов для модели glme
:
glme.ObservationInfo.Weights
binomialsize
- Размер биномаБиномиальный размер сопоставлен с каждым элементом y
, возвращен как вектор n -by-1, где n - количество наблюдений. response
возвращает только binomialsize
если условное распределение отклика, заданное как случайные эффекты, биномиально. binomialsize
пуст для других распределений.
Загрузите выборочные данные.
load mfr
Эти моделируемые данные получены от производственной компании, которая управляет 50 заводами по всему миру, причем каждый завод выполняет пакетный процесс для создания готового продукта. Компания хочет уменьшить количество дефектов в каждой партии, поэтому разработала новый производственный процесс. Чтобы проверить эффективность нового процесса, компания выбрала 20 своих фабрик наугад для участия в эксперименте: Десять фабрик реализовали новый процесс, а другие десять продолжали запускать старый процесс. На каждом из 20 заводов компания запустила пять партий (в общей сложности 100 партий) и записала следующие данные:
Флаг, указывающий, использовал ли пакет новый процесс (newprocess
)
Время вычислений для каждой партии, в часах (time
)
Температура партии, в степенях Цельсия (temp
)
Категориальная переменная, указывающая на поставщика (A
, B
, или C
) химического вещества, используемого в партии (supplier
)
Количество дефектов в партии (defects
)
Данные также включают time_dev
и temp_dev
, которые представляют абсолютное отклонение времени и температуры, соответственно, от стандарта процесса в 3 часа при 20 степенях Цельсии.
Подбор обобщенной линейной модели смешанных эффектов с помощью newprocess
, time_dev
, temp_dev
, и supplier
как предикторы фиксированных эффектов. Включите термин случайных эффектов для точки пересечения, сгруппированного по factory
, для расчета различий в качестве, которые могут существовать из-за специфичных для фабрики изменений. Переменная отклика defects
имеет распределение Пуассона, и соответствующая функция ссылки для этой модели является логарифмической. Используйте метод Laplace fit, чтобы оценить коэффициенты. Задайте кодировку фиктивной переменной следующим 'effects'
, поэтому фиктивные переменные коэффициенты равны 0.
Количество дефектов может быть смоделировано с помощью распределения Пуассона
Это соответствует обобщенной модели линейных смешанных эффектов
где
количество дефектов, наблюдаемых в партии, произведенной заводом-изготовителем во время партии .
- среднее количество дефектов, соответствующих заводу (где ) во время партии (где ).
, , и являются измерениями для каждой переменной, которые соответствуют фабрике во время партии . Для примера, указывает, производится ли партия заводом-изготовителем во время партии использовали новый процесс.
и являются фиктивными переменными, которые используют эффекты (сумма к нулю) кодирования, чтобы указать, является ли компания C
или B
, соответственно, поставила химикаты для партии, произведенной заводом во время партии .
является точка пересечения случайных эффектов для каждого завода который учитывает специфические для завода изменения в качестве.
glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)',... 'Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');
Извлеките наблюдаемые значения отклика для модели, затем используйте fitted
чтобы сгенерировать установленные условные средние значения.
y = response(glme); % Observed response values yfit = fitted(glme); % Fitted response values
Создайте рассеянный график наблюдаемых значений отклика от подобранных значений. Добавьте ссылки строку, чтобы улучшить визуализацию.
figure scatter(yfit,y) xlim([0,12]) ylim([0,12]) refline(1,0) title('Response versus Fitted Values') xlabel('Fitted Values') ylabel('Response')
График показывает положительную корреляцию между подобранными значениями и наблюдаемыми значениями отклика.
[1] Hox, J. Многоуровневый анализ, методы и приложения. Lawrence Erlbaum Associates, Inc., 2002.
У вас есть измененная версия этого примера. Вы хотите открыть этот пример с вашими правками?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.