Класс: dlhdl.Workflow
Пакет: dlhdl
Скомпилируйте объект рабочего процесса
compile
компилирует dlhdl.Workflow
возразите и генерирует параметры для развертывания сети на целевом устройстве.
compile(
компилирует Name,Value
)dlhdl.Workflow
возразите и генерирует параметры для развертывания сети на целевом устройстве, с дополнительными опциями, заданными одним или несколькими Name,Value
парные аргументы.
Функция возвращает две матрицы. Одна матрица описывает слои сети. Conv Controller (Scheduling)
и FC Controller (Scheduling)
модули в процессоре IP глубокого обучения используют эту матрицу, чтобы запланировать операции полносвязного слоя и свертка. Вторая матрица содержит веса, смещения и входные параметры нейронной сети. Эта информация загружается на память DDR и используется Generic Convolution Processor
и Generic FC Processor
в процессоре глубокого обучения.
Задайте дополнительные разделенные запятой пары Name,Value
аргументы. Name
имя аргумента и Value
соответствующее значение. Name
должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN
.
InputFrameNumberLimit
— Максимальный предел номера входного кадра Параметр, чтобы задать максимальный предел номера входного кадра, чтобы вычислить выделение доступа к памяти DDR.
Пример: 'InputFrameNumberLimit',30
dlhdl.Workflow
объект Скомпилируйте dlhdl.Workflow
объект, для развертывания на Intel® Arria® 10 комплектов разработчика SoC, которые имеют single
типы данных.
Создайте dlhdl.Workflow
возразите и затем используйте compile
функция, чтобы развернуть предварительно обученную сеть в целевой компьютер.
snet = vgg19; hT = dlhdl.Target('Intel'); hW = dlhdl.Workflow('network', snet, 'Bitstream', 'arria10soc_single','Target',hT); hW.compile
Если код выполнен, результат:
hW.compile offset_name offset_address allocated_space _______________________ ______________ _________________ "InputDataOffset" "0x00000000" "24.0 MB" "OutputResultOffset" "0x01800000" "4.0 MB" "SystemBufferOffset" "0x01c00000" "52.0 MB" "InstructionDataOffset" "0x05000000" "20.0 MB" "ConvWeightDataOffset" "0x06400000" "276.0 MB" "FCWeightDataOffset" "0x17800000" "472.0 MB" "EndOffset" "0x35000000" "Total: 848.0 MB" ans = struct with fields: Operators: [1×1 struct] LayerConfigs: [1×1 struct] NetConfigs: [1×1 struct]
Создайте dlhdl.Workflow
возразите и затем используйте compile
функция с дополнительным аргументом InputFrameNumberLimit
развернуть предварительно обученную сеть в целевой компьютер.
snet = alexnet; hT = dlhdl.Target('Xilinx'); hW = dlhdl.Workflow('network', snet, 'Bitstream', 'zcu102_single','Target',hT); hW.compile('InputFrameNumberLimit',30);
Результат выполнения кода:
### Compiling network for Deep Learning FPGA prototyping ... ### Targeting FPGA bitstream zcu102_single ... ### The network includes the following layers: 1 'data' Image Input 227×227×3 images with 'zerocenter' normalization (SW Layer) 2 'conv1' Convolution 96 11×11×3 convolutions with stride [4 4] and padding [0 0 0 0] (HW Layer) 3 'relu1' ReLU ReLU (HW Layer) 4 'norm1' Cross Channel Normalization cross channel normalization with 5 channels per element (HW Layer) 5 'pool1' Max Pooling 3×3 max pooling with stride [2 2] and padding [0 0 0 0] (HW Layer) 6 'conv2' Grouped Convolution 2 groups of 128 5×5×48 convolutions with stride [1 1] and padding [2 2 2 2] (HW Layer) 7 'relu2' ReLU ReLU (HW Layer) 8 'norm2' Cross Channel Normalization cross channel normalization with 5 channels per element (HW Layer) 9 'pool2' Max Pooling 3×3 max pooling with stride [2 2] and padding [0 0 0 0] (HW Layer) 10 'conv3' Convolution 384 3×3×256 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 11 'relu3' ReLU ReLU (HW Layer) 12 'conv4' Grouped Convolution 2 groups of 192 3×3×192 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 13 'relu4' ReLU ReLU (HW Layer) 14 'conv5' Grouped Convolution 2 groups of 128 3×3×192 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 15 'relu5' ReLU ReLU (HW Layer) 16 'pool5' Max Pooling 3×3 max pooling with stride [2 2] and padding [0 0 0 0] (HW Layer) 17 'fc6' Fully Connected 4096 fully connected layer (HW Layer) 18 'relu6' ReLU ReLU (HW Layer) 19 'drop6' Dropout 50% dropout (HW Layer) 20 'fc7' Fully Connected 4096 fully connected layer (HW Layer) 21 'relu7' ReLU ReLU (HW Layer) 22 'drop7' Dropout 50% dropout (HW Layer) 23 'fc8' Fully Connected 1000 fully connected layer (HW Layer) 24 'prob' Softmax softmax (SW Layer) 25 'output' Classification Output crossentropyex with 'tench' and 999 other classes (SW Layer) 3 Memory Regions created. Skipping: data Compiling leg: conv1>>pool5 ... Compiling leg: conv1>>pool5 ... complete. Compiling leg: fc6>>fc8 ... Compiling leg: fc6>>fc8 ... complete. Skipping: prob Skipping: output Creating Schedule... ....... Creating Schedule...complete. Creating Status Table... ...... Creating Status Table...complete. Emitting Schedule... ...... Emitting Schedule...complete. Emitting Status Table... ........ Emitting Status Table...complete. ### Allocating external memory buffers: offset_name offset_address allocated_space _______________________ ______________ _________________ "InputDataOffset" "0x00000000" "24.0 MB" "OutputResultOffset" "0x01800000" "4.0 MB" "SchedulerDataOffset" "0x01c00000" "4.0 MB" "SystemBufferOffset" "0x02000000" "28.0 MB" "InstructionDataOffset" "0x03c00000" "4.0 MB" "ConvWeightDataOffset" "0x04000000" "16.0 MB" "FCWeightDataOffset" "0x05000000" "224.0 MB" "EndOffset" "0x13000000" "Total: 304.0 MB" ### Network compilation complete.
dagnet
сетевой объектСоздайте dlhdl.Workflow
объект с resnet18
как сеть для развертывания на Xilinx® Zynq® Плата UltraScale +™ MPSoC ZCU102, которая использует single
типы данных.
snet = resnet18; hTarget = dlhdl.Target('Xilinx'); hW = dlhdl.Workflow('N',snet,'B','zcu102_single','T',hTarget);
Вызовите compile
функция на hW
hW.compile
Вызов compile
функция, возвращается:
### Compiling network for Deep Learning FPGA prototyping ... ### Targeting FPGA bitstream zcu102_single ... ### The network includes the following layers: 1 'data' Image Input 224×224×3 images with 'zscore' normalization (SW Layer) 2 'conv1' Convolution 64 7×7×3 convolutions with stride [2 2] and padding [3 3 3 3] (HW Layer) 3 'bn_conv1' Batch Normalization Batch normalization with 64 channels (HW Layer) 4 'conv1_relu' ReLU ReLU (HW Layer) 5 'pool1' Max Pooling 3×3 max pooling with stride [2 2] and padding [1 1 1 1] (HW Layer) 6 'res2a_branch2a' Convolution 64 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 7 'bn2a_branch2a' Batch Normalization Batch normalization with 64 channels (HW Layer) 8 'res2a_branch2a_relu' ReLU ReLU (HW Layer) 9 'res2a_branch2b' Convolution 64 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 10 'bn2a_branch2b' Batch Normalization Batch normalization with 64 channels (HW Layer) 11 'res2a' Addition Element-wise addition of 2 inputs (HW Layer) 12 'res2a_relu' ReLU ReLU (HW Layer) 13 'res2b_branch2a' Convolution 64 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 14 'bn2b_branch2a' Batch Normalization Batch normalization with 64 channels (HW Layer) 15 'res2b_branch2a_relu' ReLU ReLU (HW Layer) 16 'res2b_branch2b' Convolution 64 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 17 'bn2b_branch2b' Batch Normalization Batch normalization with 64 channels (HW Layer) 18 'res2b' Addition Element-wise addition of 2 inputs (HW Layer) 19 'res2b_relu' ReLU ReLU (HW Layer) 20 'res3a_branch2a' Convolution 128 3×3×64 convolutions with stride [2 2] and padding [1 1 1 1] (HW Layer) 21 'bn3a_branch2a' Batch Normalization Batch normalization with 128 channels (HW Layer) 22 'res3a_branch2a_relu' ReLU ReLU (HW Layer) 23 'res3a_branch2b' Convolution 128 3×3×128 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 24 'bn3a_branch2b' Batch Normalization Batch normalization with 128 channels (HW Layer) 25 'res3a' Addition Element-wise addition of 2 inputs (HW Layer) 26 'res3a_relu' ReLU ReLU (HW Layer) 27 'res3a_branch1' Convolution 128 1×1×64 convolutions with stride [2 2] and padding [0 0 0 0] (HW Layer) 28 'bn3a_branch1' Batch Normalization Batch normalization with 128 channels (HW Layer) 29 'res3b_branch2a' Convolution 128 3×3×128 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 30 'bn3b_branch2a' Batch Normalization Batch normalization with 128 channels (HW Layer) 31 'res3b_branch2a_relu' ReLU ReLU (HW Layer) 32 'res3b_branch2b' Convolution 128 3×3×128 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 33 'bn3b_branch2b' Batch Normalization Batch normalization with 128 channels (HW Layer) 34 'res3b' Addition Element-wise addition of 2 inputs (HW Layer) 35 'res3b_relu' ReLU ReLU (HW Layer) 36 'res4a_branch2a' Convolution 256 3×3×128 convolutions with stride [2 2] and padding [1 1 1 1] (HW Layer) 37 'bn4a_branch2a' Batch Normalization Batch normalization with 256 channels (HW Layer) 38 'res4a_branch2a_relu' ReLU ReLU (HW Layer) 39 'res4a_branch2b' Convolution 256 3×3×256 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 40 'bn4a_branch2b' Batch Normalization Batch normalization with 256 channels (HW Layer) 41 'res4a' Addition Element-wise addition of 2 inputs (HW Layer) 42 'res4a_relu' ReLU ReLU (HW Layer) 43 'res4a_branch1' Convolution 256 1×1×128 convolutions with stride [2 2] and padding [0 0 0 0] (HW Layer) 44 'bn4a_branch1' Batch Normalization Batch normalization with 256 channels (HW Layer) 45 'res4b_branch2a' Convolution 256 3×3×256 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 46 'bn4b_branch2a' Batch Normalization Batch normalization with 256 channels (HW Layer) 47 'res4b_branch2a_relu' ReLU ReLU (HW Layer) 48 'res4b_branch2b' Convolution 256 3×3×256 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 49 'bn4b_branch2b' Batch Normalization Batch normalization with 256 channels (HW Layer) 50 'res4b' Addition Element-wise addition of 2 inputs (HW Layer) 51 'res4b_relu' ReLU ReLU (HW Layer) 52 'res5a_branch2a' Convolution 512 3×3×256 convolutions with stride [2 2] and padding [1 1 1 1] (HW Layer) 53 'bn5a_branch2a' Batch Normalization Batch normalization with 512 channels (HW Layer) 54 'res5a_branch2a_relu' ReLU ReLU (HW Layer) 55 'res5a_branch2b' Convolution 512 3×3×512 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 56 'bn5a_branch2b' Batch Normalization Batch normalization with 512 channels (HW Layer) 57 'res5a' Addition Element-wise addition of 2 inputs (HW Layer) 58 'res5a_relu' ReLU ReLU (HW Layer) 59 'res5a_branch1' Convolution 512 1×1×256 convolutions with stride [2 2] and padding [0 0 0 0] (HW Layer) 60 'bn5a_branch1' Batch Normalization Batch normalization with 512 channels (HW Layer) 61 'res5b_branch2a' Convolution 512 3×3×512 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 62 'bn5b_branch2a' Batch Normalization Batch normalization with 512 channels (HW Layer) 63 'res5b_branch2a_relu' ReLU ReLU (HW Layer) 64 'res5b_branch2b' Convolution 512 3×3×512 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 65 'bn5b_branch2b' Batch Normalization Batch normalization with 512 channels (HW Layer) 66 'res5b' Addition Element-wise addition of 2 inputs (HW Layer) 67 'res5b_relu' ReLU ReLU (HW Layer) 68 'pool5' Global Average Pooling Global average pooling (HW Layer) 69 'fc1000' Fully Connected 1000 fully connected layer (HW Layer) 70 'prob' Softmax softmax (SW Layer) 71 'ClassificationLayer_predictions' Classification Output crossentropyex with 'tench' and 999 other classes (SW Layer) ### Optimizing series network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer' 5 Memory Regions created. Skipping: data Compiling leg: conv1>>pool1 ... Compiling leg: conv1>>pool1 ... complete. Compiling leg: res2a_branch2a>>res2a_branch2b ... Compiling leg: res2a_branch2a>>res2a_branch2b ... complete. Compiling leg: res2b_branch2a>>res2b_branch2b ... Compiling leg: res2b_branch2a>>res2b_branch2b ... complete. Compiling leg: res3a_branch2a>>res3a_branch2b ... Compiling leg: res3a_branch2a>>res3a_branch2b ... complete. Compiling leg: res3a_branch1 ... Compiling leg: res3a_branch1 ... complete. Compiling leg: res3b_branch2a>>res3b_branch2b ... Compiling leg: res3b_branch2a>>res3b_branch2b ... complete. Compiling leg: res4a_branch2a>>res4a_branch2b ... Compiling leg: res4a_branch2a>>res4a_branch2b ... complete. Compiling leg: res4a_branch1 ... Compiling leg: res4a_branch1 ... complete. Compiling leg: res4b_branch2a>>res4b_branch2b ... Compiling leg: res4b_branch2a>>res4b_branch2b ... complete. Compiling leg: res5a_branch2a>>res5a_branch2b ... Compiling leg: res5a_branch2a>>res5a_branch2b ... complete. Compiling leg: res5a_branch1 ... Compiling leg: res5a_branch1 ... complete. Compiling leg: res5b_branch2a>>res5b_branch2b ... Compiling leg: res5b_branch2a>>res5b_branch2b ... complete. Compiling leg: pool5 ... Compiling leg: pool5 ... complete. Compiling leg: fc1000 ... Compiling leg: fc1000 ... complete. Skipping: prob Skipping: ClassificationLayer_predictions Creating Schedule... ........................... Creating Schedule...complete. Creating Status Table... .......................... Creating Status Table...complete. Emitting Schedule... .......................... Emitting Schedule...complete. Emitting Status Table... ............................ Emitting Status Table...complete. ### Allocating external memory buffers: offset_name offset_address allocated_space _______________________ ______________ _________________ "InputDataOffset" "0x00000000" "24.0 MB" "OutputResultOffset" "0x01800000" "4.0 MB" "SchedulerDataOffset" "0x01c00000" "4.0 MB" "SystemBufferOffset" "0x02000000" "28.0 MB" "InstructionDataOffset" "0x03c00000" "4.0 MB" "ConvWeightDataOffset" "0x04000000" "52.0 MB" "FCWeightDataOffset" "0x07400000" "4.0 MB" "EndOffset" "0x07800000" "Total: 120.0 MB" ### Network compilation complete. ans = struct with fields: weights: [1×1 struct] instructions: [1×1 struct] registers: [1×1 struct] syncInstructions: [1×1 struct]
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.