Сверточная нейронная сеть Pretrained NASNet-Large
NASNet-большой сверточная нейронная сеть, которая обучена больше чем на миллионе изображений от базы данных ImageNet [1]. Сеть может классифицировать изображения в 1 000 категорий объектов, таких как клавиатура, мышь, карандаш и многие животные. В результате сеть изучила богатые представления функции для широкого спектра изображений. Сеть имеет входной размер изображений 331 331. Для большего количества предварительно обученных сетей в MATLAB®, смотрите Предварительно обученные Глубокие нейронные сети.
Можно использовать classify
классифицировать новые изображения с помощью NASNet-большой-модели. Выполните шаги, Классифицируют Изображение Используя GoogLeNet и заменяют GoogLeNet на NASNet-большой.
Чтобы переобучить сеть на новой задаче классификации, выполните шаги, Обучают Нейронную сеть для глубокого обучения Классифицировать Новые Изображения и загрузку, NASNet-большую вместо GoogLeNet.
[1] ImageNet. http://www.image-net.org
[2] Zoph, Берет, Виджай Вэзудевэн, Джонатон Шленс и Кок В. Ле. "Изучая Передаваемые Архитектуры для Масштабируемого Распознавания Изображений". arXiv предварительно распечатывают arXiv:1707.07012 2, № 6 (2017).
Deep Network Designer | vgg16
| vgg19
| googlenet
| trainNetwork
| layerGraph
| DAGNetwork
| resnet50
| resnet101
| inceptionresnetv2
| squeezenet
| densenet201
| nasnetmobile
| shufflenet