softmaxLayer

Описание

softmax слой применяет функцию softmax к входу.

Создание

Описание

layer = softmaxLayer создает softmax слой.

пример

layer = softmaxLayer('Name',Name) создает softmax слой и устанавливает дополнительный Name свойство с помощью пары "имя-значение". Например, softmaxLayer('Name','sm1') создает softmax слой с именем 'sm1'. Заключите имя свойства в одинарные кавычки.

Свойства

развернуть все

Имя слоя в виде вектора символов или строкового скаляра. Для Layer вход массивов, trainNetwork, assembleNetwork, layerGraph, и dlnetwork функции автоматически присваивают имена к слоям с Name установите на ''.

Типы данных: char | string

Это свойство доступно только для чтения.

Количество входных параметров слоя. Этот слой принимает один вход только.

Типы данных: double

Это свойство доступно только для чтения.

Введите имена слоя. Этот слой принимает один вход только.

Типы данных: cell

Это свойство доступно только для чтения.

Количество выходных параметров слоя. Этот слой имеет один выход только.

Типы данных: double

Это свойство доступно только для чтения.

Выведите имена слоя. Этот слой имеет один выход только.

Типы данных: cell

Примеры

свернуть все

Создайте softmax слой с именем 'sm1'.

layer = softmaxLayer('Name','sm1')
layer = 
  SoftmaxLayer with properties:

    Name: 'sm1'

Включайте softmax слой в Layer массив.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    reluLayer
    maxPooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]
layers = 
  7x1 Layer array with layers:

     1   ''   Image Input             28x28x1 images with 'zerocenter' normalization
     2   ''   Convolution             20 5x5 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                    ReLU
     4   ''   Max Pooling             2x2 max pooling with stride [2  2] and padding [0  0  0  0]
     5   ''   Fully Connected         10 fully connected layer
     6   ''   Softmax                 softmax
     7   ''   Classification Output   crossentropyex

Больше о

развернуть все

Ссылки

[1] Епископ, C. M. Распознавание образов и машинное обучение. Спрингер, Нью-Йорк, Нью-Йорк, 2006.

Расширенные возможности

Генерация кода C/C++
Генерация кода C и C++ с помощью MATLAB® Coder™.

Генерация кода графического процессора
Сгенерируйте код CUDA® для NVIDIA® графические процессоры с помощью GPU Coder™.

Введенный в R2016a
Для просмотра документации необходимо авторизоваться на сайте