Глубокое обучение для данных о временных рядах и последовательности

Создайте и обучите нейронные сети для задач классификации, регрессии и прогнозирования временных рядов

Создайте и обучите нейронные сети для задач классификации, регрессии и прогнозирования временных рядов. Обучите сети долгой краткосрочной памяти (LSTM) для sequence-one или классификации последовательностей к метке и проблем регрессии. Можно обучить сети LSTM на текстовых данных с помощью слоев встраивания слова (требует, чтобы Text Analytics Toolbox™) или сверточные нейронные сети на аудиоданных с помощью спектрограмм (потребовал Audio Toolbox™).

Приложения

Deep Network DesignerСпроектируйте, визуализируйте и обучите нейронные сети для глубокого обучения

Функции

развернуть все

trainingOptionsОпции для обучения глубокой нейронной сети
trainNetworkОбучите глубокую нейронную сеть
analyzeNetworkАнализируйте архитектуру нейронной сети для глубокого обучения

Входные слои

sequenceInputLayerПоследовательность ввела слой
featureInputLayerСвойства входного слоя

Текущие слои

lstmLayerСлой Long short-term memory (LSTM)
bilstmLayerДвунаправленный долгий краткосрочный слой (BiLSTM) памяти
gruLayerСлой Gated recurrent unit (GRU)

Свертки и полносвязные слои

convolution1dLayer1D сверточный слой
fullyConnectedLayerПолносвязный слой

Объединение слоев

maxPooling1dLayer1D макс. слой объединения
averagePooling1dLayer1D средний слой объединения
globalMaxPooling1dLayer1D глобальная переменная макс. объединение слоя
globalAveragePooling1dLayer1D глобальный средний слой объединения

Активация и слои уволенного

reluLayerСлой выпрямленных линейных единиц (ReLU)
leakyReluLayerПротекающий ReLU (ReLU)"
clippedReluLayerОтсеченный ReLU
eluLayerСлой экспоненциальных линейных единиц (ELU)
tanhLayerГиперболический тангенс (tanh) слой
swishLayerСлой Swish
softmaxLayerСлой Softmax
dropoutLayerСлой Dropout
functionLayerФункциональный слой

Управление данными

sequenceFoldingLayerСлой сворачивания последовательности
sequenceUnfoldingLayerСлой разворачивания последовательности
flattenLayerСлой Flatten

Выходной слой

classificationLayerСлой классификации
regressionLayerСоздайте регрессию выходной слой
classifyКлассифицируйте данные с помощью обученной глубокой нейронной сети
predictПредскажите ответы с помощью обученной глубокой нейронной сети
activationsВычислите активации слоя нейронной сети для глубокого обучения
predictAndUpdateStateПредскажите ответы с помощью обученной рекуррентной нейронной сети и обновите сетевое состояние
classifyAndUpdateStateКлассифицируйте данные с помощью обученной рекуррентной нейронной сети и обновите сетевое состояние
resetStateСбросьте состояние рекуррентной нейронной сети
confusionchartСоздайте матричный график беспорядка для проблемы классификации
sortClassesСортировка классов матричного графика беспорядка
padsequencesЗаполните или обрежьте данные о последовательности до той же длины

Блоки

развернуть все

PredictПредскажите ответы с помощью обученной глубокой нейронной сети
Stateful PredictПредскажите ответы с помощью обученной рекуррентной нейронной сети
Stateful ClassifyКлассифицируйте данные с помощью обученной рекуррентной нейронной сети глубокого обучения

Свойства

ConfusionMatrixChart PropertiesМатричный вид диаграммы беспорядка и поведение

Примеры и руководства

Последовательности и временные ряды

Классификация последовательностей Используя глубокое обучение

В этом примере показано, как классифицировать данные о последовательности с помощью сети долгой краткосрочной памяти (LSTM).

Классификация последовательностей Используя 1D свертки

В этом примере показано, как классифицировать данные о последовательности с помощью 1D сверточной нейронной сети.

Классификация от последовательности к последовательности Используя глубокое обучение

В этом примере показано, как классифицировать каждый временной шаг данных о последовательности с помощью сети долгой краткосрочной памяти (LSTM).

Регрессия от последовательности к последовательности Используя глубокое обучение

В этом примере показано, как предсказать остающийся срок полезного использования (RUL) механизмов при помощи глубокого обучения.

Прогнозирование временных рядов Используя глубокое обучение

В этом примере показано, как предсказать данные временных рядов с помощью сети долгой краткосрочной памяти (LSTM).

Классифицируйте видео Используя глубокое обучение

В этом примере показано, как создать сеть для видео классификации путем объединения предварительно обученной модели классификации изображений и сети LSTM.

Классифицируйте видео Используя глубокое обучение для пользовательского учебного цикла

В этом примере показано, как создать сеть для видео классификации путем объединения предварительно обученной модели классификации изображений и сети классификации последовательностей.

Распознание речевых команд с использованием глубокого обучения

В этом примере показано, как обучить модель глубокого обучения, которая обнаруживает присутствие речевых команд в аудио.

Отобразите ввод субтитров Используя внимание

В этом примере показано, как обучить модель глубокого обучения вводу субтитров изображений с помощью внимания.

Обучите сеть Используя пользовательский мини-пакетный Datastore для данных о последовательности

В этом примере показано, как обучить нейронную сеть для глубокого обучения на данных о последовательности из памяти с помощью пользовательского мини-пакетного datastore.

Визуализируйте активации сети LSTM

В этом примере показано, как исследовать и визуализировать функции, изученные сетями LSTM путем извлечения активаций.

Классификация от последовательности к последовательности Используя 1D свертки

В этом примере показано, как классифицировать каждый временной шаг данных о последовательности с помощью типовой временной сверточной сети (TCN).

Химическое обнаружение отказа процесса Используя глубокое обучение

В этом примере показано, как использовать данные моделирования, чтобы обучить нейронную сеть, которая может обнаружить отказы в химическом процессе.

Создайте сети с Deep Network Designer

В интерактивном режиме создайте и отредактируйте нейронные сети для глубокого обучения в Deep Network Designer.

Создайте простую сеть классификации последовательностей Используя Deep Network Designer

В этом примере показано, как создать простую сеть классификации долгой краткосрочной памяти (LSTM) использование Deep Network Designer.

Предскажите и обновите сетевое состояние в Simulink

В этом примере показано, как предсказать ответы для обученной рекуррентной нейронной сети в Simulink® при помощи Stateful Predict блок.

Классифицируйте и обновите сетевое состояние в Simulink

В этом примере показано, как классифицировать данные для обученной рекуррентной нейронной сети в Simulink® при помощи Stateful Classify блок.

Концепции

Длинные краткосрочные сети памяти

Узнайте о сетях долгой краткосрочной памяти (LSTM).

Список слоев глубокого обучения

Узнайте все слои глубокого обучения в MATLAB®.

Хранилища данных для глубокого обучения

Узнать, как использовать хранилища данных в применении глубокого обучения.

Глубокое обучение в MATLAB

Узнайте возможности глубокого обучения в сверточных нейронных сетях использования MATLAB для классификации и регрессии, включая предварительно обученные сети и передачу обучения и обучение на графических процессорах, центральных процессорах, кластерах и облаках.

Советы глубокого обучения и приемы

Узнать, как улучшить точность нейронных сетей для глубокого обучения.

Наборы данных для глубокого обучения

Узнайте наборы данных для различных задач глубокого обучения.

Рекомендуемые примеры