Непарный результат испытаний гипотезы
NegativeBinomialTest
объект, возвращенный nbintest
функционируйте, содержит результаты непарного теста гипотезы для данных о количестве короткого чтения с размерами небольшой выборки. Используйте этот объект получить доступ к p-значениям теста или создать диагностические графики.
nbintest
возвращает непарный результат испытаний гипотезы как NegativeBinomialTest
объект. Вы не можете создать этот объект непосредственно.
pValue
— Двухсторонние p-значенияДвухсторонние p-значения в виде вектор-столбца, для каждой строки входных параметров к nbintest
.
VarianceLink
— Тип рычажного устройства между отклонением и средним значением'LocalRegression'
(значение по умолчанию) | 'Constant'
| 'Identity'
Это свойство доступно только для чтения.
Тип рычажного устройства между отклонением и средним значением в виде вектора символов или строки. Эта таблица суммирует доступные опции рычажного устройства.
Опция рычажного устройства | Описание |
---|---|
'LocalRegression' | Отклонение является суммой шумовой части выстрела (среднее значение), и локально регрессировал непараметрическая сглаженная функция среднего значения как описано в [1]. Эта опция является значением по умолчанию. Используйте эту опцию, если ваши данные содержат несколько строк (гены), такие как больше чем 1 000 строк. |
'Constant' | Отклонение является суммой шумовой части выстрела (среднее значение) и константа, умноженная на среднее значение в квадрате как описано в [2]. Этот метод использует все строки в данных, чтобы оценить константу. Используйте эту опцию, если ваши данные имеют меньше строк, то есть, меньше чем 1 000 строк, и сверхрассеиваются. |
'Identity' | Отклонение равно среднему значению как описано в [3]. Количества поэтому моделируются распределением Пуассона индивидуально для каждой строки X и Y . Используйте эту опцию, чтобы сравнить результаты других двух опций. |
PooledVariance
— Логический флаг, чтобы объединить отклонение между обоими условиямиЭто свойство доступно только для чтения.
Логический флаг, чтобы объединить отклонение между обоими условиями в виде 1 (true
) или 0 (false
). Значение по умолчанию 0, означая, что отклонение оценивается отдельно для каждого условия.
SizeFactors
— Размер (масштабирование) фактор каждого столбца в X и YЭто свойство доступно только для чтения.
Размер (масштабирование) фактор каждого столбца в X
и Y
В виде массива ячеек двух векторов, таких как {SX,SY}
. SX
и SY
числовые векторы с размерами, равными size(X,2)
и size(Y,2)
.
Примечание
Эти свойства только для чтения. Запущенный nbintest
изменить их.
plotVarianceLink | Постройте демонстрационное отклонение по сравнению с оценкой зависимого условием среднего значения |
plotChiSquaredFit | Постройте goodnesss-fit регрессию отклонения |
В этом примере показано, как выполнить непарный тест гипотезы для синтетических данных о количестве короткого чтения из двух различных биологических условий.
Данные в этом примере содержат синтетические генные данные о количестве для 5 000 генов, представляя два различных биологических условия, такие как больные и нормальные ячейки. Для каждого условия существует пять выборок. Только 10% генов (500 генов) дифференцированно описываются. А именно, половина из них (250 генов) точно 3-кратная сверхописанный. Другие 250 генов являются 3-кратным underexpressed. Остальная часть данных об экспрессии гена сгенерирована от того же отрицательного биномиального распределения для обоих условий. Каждая выборка также имеет различный фактор размера (то есть, покрытие или глубина выборки).
Загрузите данные.
load('nbintest_data.mat','K','H0');
Переменная K
содержит генные данные о количестве. Строки представляют гены, и столбцы представляют выборки. В этом случае первые пять столбцов представляют выборки от первого условия. Другие пять столбцов представляют выборки от второго условия. Отобразите первые несколько строк K
.
K(1:5,:)
ans = 5×10
13683 14140 8281 14309 12208 8045 9446 11317 14597 14592
16028 16805 9813 16486 14076 9901 10927 13348 16999 17036
814 862 492 910 758 521 573 753 870 936
15870 16453 9857 16454 14267 9671 10997 13624 17151 17205
9422 9393 5734 9598 8174 5381 6315 7752 9869 9795
В этом примере нулевая гипотеза верна, когда гена дифференцированно не выражают. Переменная H0
содержит булевы индикаторы, которые указывают, для которых генов нулевая гипотеза верна (отмеченный как 1). Другими словами, H0 содержит известные метки, которые вы будете использовать позже, чтобы соответствовать предсказанным результатам.
sum(H0)
ans = 4500
Из 5 000 генов, 4500 дифференцированно не выражаются в этих синтетических данных.
Запустите непарный тест гипотезы для выборок от двух условий с помощью nbintest
. Предположение - то, что данные прибыли из отрицательного биномиального распределения, где отклонение соединяется со средним значением через локально регрессировавшую сглаженную функцию среднего значения как описано в [1] установкой 'VarianceLink'
к 'LocalRegression'
.
tLocal = nbintest(K(:,1:5),K(:,6:10),'VarianceLink','LocalRegression');
Используйте plotVarianceLink
построить график рассеивания для каждого экспериментального условия (для условий X и Y), с демонстрационным отклонением по общей шкале по сравнению с оценкой зависимого условием среднего значения. Используйте линейную шкалу для обеих осей. Включайте кривые для всех других опций рычажного устройства установкой 'Compare'
к true
.
plotVarianceLink(tLocal,'Scale','linear','Compare',true)
Identity
линия представляет модель Poisson, где отклонение идентично среднему значению как описано в [3]. Заметьте, что данные, кажется, сверхрассеиваются (то есть, большинство точек выше Identity
строка. Constant
линия представляет отрицательную биномиальную модель, где отклонение является суммой шумовой части выстрела (среднее значение) и константа, умноженная на среднее значение в квадрате как описано в [2]. Local Regression
и Constant
опции рычажного устройства, кажется, соответствуют лучше сверхрассеянным данным.
Используйте plotChiSquaredFit
оценить качество подгонки для регрессии отклонения. Это строит эмпирический CDF (ecdf) вероятностей в квадрате хи. Вероятности являются отношением между наблюдаемым и предполагаемым отклонением, расслоенным уровнями количества короткого чтения в пять интервалов равного размера.
plotChiSquaredFit(tLocal)
Каждый рисунок показывает пять кривых ecdf. Каждая кривая представляет один из пяти уровней количества короткого чтения. Например, синяя линия представляет кривую ecdf для низких количеств короткого чтения между 0 и 1264. Красная линия представляет высокие количества (больше чем 11 438).
Один способ интерпретировать кривые состоит в том, чтобы проверять, ли кривые ecdf выше диагональной линии. Если они выше линии, то отклонение завышено. Если они ниже линии, то отклонение недооценено. На обоих рисунках отклонение, кажется, правильно оценивается для более высоких количеств (то есть, красная линия следует за диагональной линией), но немного завышенный для более низких уровней количества.
Чтобы оценить эффективность теста гипотезы, создайте матрицу беспорядка использование известных меток и предсказанных p-значений.
confusionmat(H0,(tLocal.pValue > .001))
ans = 2×2
493 7
5 4495
Из 500 дифференцированно описанных генов, 493 правильно предсказаны (истинные положительные стороны), и 7 из них неправильно предсказаны как не дифференцированно описанные гены (ложные отрицательные стороны). Из 4 500 генов, которых дифференцированно не выражают, 4495, правильно предсказаны (истинные отрицательные стороны), и 5 из них неправильно предсказаны как дифференцированно описанные гены (ложные положительные стороны).
Для сравнения, запущенного тест гипотезы, снова принимающий, что количества моделируются распределением Пуассона, где отклонение идентично среднему значению.
tPoisson = nbintest(K(:,1:5),K(:,6:10),'VarianceLink','Identity');
Постройте кривые ecdf. Заметьте, что все кривые ниже диагональной линии, подразумевая, что отклонение недооценено. Поэтому отрицательная биномиальная модель соответствует данным лучше.
plotChiSquaredFit(tPoisson)
[1] Андерс, S. и Хубер, W. (2010). Дифференциальный анализ выражения для последовательности считает данные. Биология генома, 11 (10): R106.
[2] Робинсон, Доктор медицины, и Smyth, G.K. (2008). Оценка небольшой выборки Отрицательной Биномиальной Дисперсии, с Приложениями к данным SAGE. Биостатистика, 9:321-332.
[3] Мариони, J.C., масон, C.E., грива, S.M., Стивенс, M. и Гилад, Y. (2008). RNA-seq: оценка технической воспроизводимости и сравнения с массивами экспрессии гена. Исследование генома, 16:1509-1517.
У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?
Вы щелкнули по ссылке, которая соответствует команде MATLAB:
Выполните эту команду, введя её в командном окне MATLAB.
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.