Обнаружьте эффекты ДУГИ

Протестируйте автокорреляцию квадратов остатков

В этом примере показано, как смотреть ряд квадрата остатка для автокорреляции путем графического вывода демонстрационной автокорреляционной функции (ACF) и частичная автокорреляционная функция (PACF). Затем проведите Q-тест Ljung-поля, чтобы более официально оценить автокорреляцию.

Загрузите данные.

Загрузите данные NASDAQ, включенные с тулбоксом. Преобразуйте ряд сводного индекса дневного закрытия в процент, возвращают ряд.

load Data_EquityIdx;
y = DataTable.NASDAQ;
r = 100*price2ret(y);
T = length(r);

figure
plot(r)
xlim([0,T])
title('NASDAQ Daily Returns')

Figure contains an axes object. The axes object with title NASDAQ Daily Returns contains an object of type line.

Возвраты, кажется, колеблются вокруг постоянного уровня, но кластеризации энергозависимости выставки. Большие изменения в возвратах имеют тенденцию кластеризироваться вместе, и небольшие изменения имеют тенденцию кластеризироваться вместе. Таким образом, ряд показывает условное выражение heteroscedasticity.

Возвраты имеют относительно высокую частоту. Поэтому ежедневные изменения могут быть малыми. Для числовой устойчивости это - хорошая практика, чтобы масштабировать такие данные.

Постройте демонстрационный ACF и PACF.

Постройте демонстрационный ACF и PACF для ряда квадрата остатка.

e = r - mean(r);

figure
subplot(2,1,1)
autocorr(e.^2)
subplot(2,1,2)
parcorr(e.^2)

Figure contains 2 axes objects. Axes object 1 with title Sample Autocorrelation Function contains 4 objects of type stem, line. Axes object 2 with title Sample Partial Autocorrelation Function contains 4 objects of type stem, line.

Демонстрационный ACF и PACF показывают значительную автокорреляцию в ряду квадрата остатка. Это указывает, что кластеризация энергозависимости присутствует в остаточном ряду.

Проведите Q-тест Ljung-поля.

Проведите Q-тест Ljung-поля на ряде квадрата остатка в задержках 5 и 10.

[h,p] = lbqtest(e.^2,'Lags',[5,10])
h = 1x2 logical array

   1   1

p = 1×2

     0     0

Нулевая гипотеза отклоняется для двух тестов (h = 1). P значениями для обоих тестов является 0. Таким образом не все автокорреляции, чтобы отстать 5 (или 10) являются нулем, указывая на энергозависимость, кластеризирующуюся в остаточном ряду.

Проведите тест ДУГИ Энгла

В этом примере показано, как провести тест ДУГИ Энгла для условного выражения heteroscedasticity.

Загрузите данные.

Загрузите данные NASDAQ, включенные с тулбоксом. Преобразуйте ряд сводного индекса дневного закрытия в процент, возвращают ряд.

load Data_EquityIdx;
y = DataTable.NASDAQ;
r = 100*price2ret(y);
T = length(r);

figure
plot(r)
xlim([0,T])
title('NASDAQ Daily Returns')

Figure contains an axes object. The axes object with title NASDAQ Daily Returns contains an object of type line.

Возвраты, кажется, колеблются вокруг постоянного уровня, но кластеризации энергозависимости выставки. Большие изменения в возвратах имеют тенденцию кластеризироваться вместе, и небольшие изменения имеют тенденцию кластеризироваться вместе. Таким образом, ряд показывает условное выражение heteroscedasticity.

Возвраты имеют относительно высокую частоту. Поэтому ежедневные изменения могут быть малыми. Для числовой устойчивости это - хорошая практика, чтобы масштабировать такие данные.

Проведите тест ДУГИ Энгла.

Проведите тест ДУГИ Энгла для условного выражения heteroscedasticity на остаточном ряде, с помощью двух задержек в альтернативной гипотезе.

e = r - mean(r);
[h,p,fStat,crit] = archtest(e,'Lags',2)
h = logical
   1

p = 0
fStat = 399.9693
crit = 5.9915

Нулевая гипотеза обоснованно отклоняется (h = 1, p = 0) в пользу ДУГИ (2) альтернатива. Статистической величиной F для теста является 399.97, намного больше, чем критическое значение от χ2 распределение с двумя степенями свободы, 5.99.

Тест приходит к заключению, что существует значительная энергозависимость, кластеризирующаяся в остаточном ряду.

Смотрите также

| | |

Связанные примеры

Больше о