Модели броуновского движения
Создает и отображает Броуновское движение (иногда названный арифметическим Броуновским движением, или обобщил Винеровский процесс), bm
объекты, которые выводят из sdeld
(SDE с уровнем дрейфа, описанным в линейной форме) класс.
Используйте bm
объекты симулировать демонстрационные пути NVars
переменные состояния управляются NBrowns
источники риска по NPeriods
последовательные периоды наблюдения, аппроксимируя стохастические процессы Броуновского движения непрерывного времени. Это позволяет вам преобразовать вектор из NBrowns
некоррелированое, смещение нуля, уровень модульного отклонения Броуновские компоненты в вектор из NVars
Броуновские компоненты с произвольным дрейфом, уровнем отклонения и структурой корреляции.
Используйте bm
симулировать любой процесс BM с векторным знаком формы:
где:
Xt является NVars
- 1
вектор состояния переменных процесса.
μ является NVars
- 1
вектор уровня дрейфа.
V является NVars
- NBrowns
мгновенная матрица уровня энергозависимости.
dWt является NBrowns
- 1
вектор из (возможно) коррелированого уровня "отклонение смещения нуля" Броуновские компоненты.
создает BM
= bm(Mu
,Sigma
)BM
по умолчанию объект.
Задайте требуемые входные параметры как один из следующих типов:
MATLAB® массив. Определение массива указывает на статическую (неизменяющуюся во времени) параметрическую спецификацию. Этот массив полностью получает все детали реализации, которые ясно сопоставлены с параметрической формой.
Функция MATLAB. Определение функции оказывает косвенную поддержку для фактически любой статической, динамической, линейной, или нелинейной модели. Этот параметр поддерживается через интерфейс, потому что все детали реализации скрыты и полностью инкапсулируются функцией.
Примечание
Можно задать комбинации массива и параметров входного параметра функции по мере необходимости.
Кроме того, параметр идентифицирован как детерминированная функция времени, если функция принимает скалярное время t
как его единственный входной параметр. В противном случае параметр принят, чтобы быть функцией времени t и утвердить X(t) и вызывается с обоими входными параметрами.
создает BM
= bm(___,Name,Value
)bm
объект с дополнительными опциями, заданными одним или несколькими Name,Value
парные аргументы.
Name
имя свойства и Value
его соответствующее значение. Name
должен появиться в одинарных кавычках (''
). Можно задать несколько аргументов пары "имя-значение" в любом порядке как Name1,Value1,…,NameN,ValueN
BM
объект имеет следующие Свойства:
StartTime
— Начальное время наблюдения
StartState
— Начальное состояние во время StartTime
Correlation
— Функция доступа для Correlation
входной параметр, вызываемый в зависимости от времени
Drift
— Составная функция уровня дрейфа, вызываемая в зависимости от времени и состояния
Diffusion
— Составная функция уровня диффузии, вызываемая в зависимости от времени и состояния
Simulation
— Функция симуляции или метод
interpolate | Броуновская интерполяция стохастических дифференциальных уравнений |
simulate | Симулируйте многомерные стохастические дифференциальные уравнения (SDEs) |
simByEuler | Эйлерова симуляция стохастических дифференциальных уравнений (SDEs) |
Когда вы задаете необходимые входные параметры как массивы, они сопоставлены с определенной параметрической формой. В отличие от этого, когда вы задаете любой необходимый входной параметр как функцию, можно настроить фактически любую спецификацию.
Доступ к выходным параметрам без входных параметров просто возвращает исходную входную спецификацию. Таким образом, когда вы вызываете эти параметры без входных параметров, они ведут себя как простые свойства и позволяют вам тестировать тип данных (удвойтесь по сравнению с функцией, или эквивалентно, статические по сравнению с динамическим) исходной входной спецификации. Это полезно для проверки и разработки методов.
Когда вы вызываете эти параметры с входными параметрами, они ведут себя как функции, производя впечатление динамического поведения. Параметры принимают время наблюдения t и вектор состояния Xt, и возвращают массив соответствующей размерности. Даже если вы первоначально задали вход как массив, bm
обработки это, когда статическая функция времени и состояния, этим означает гарантировать, что все параметры доступны тем же интерфейсом.
[1] Aït-Sahalia, Yacine. “Тестируя Модели Непрерывного времени Точечной Процентной ставки”. Анализ Финансовых Исследований, издания 9, № 2, апрель 1996, стр 385–426.
[2] Aït-Sahalia, Yacine. “Плотность перехода для Процентной ставки и Другой Нелинейной Диффузии”. Журнал Финансов, издания 54, № 4, август 1999, стр 1361–95.
[3] Глассермен, Пол. Методы Монте-Карло в финансовой разработке. Спрингер, 2004.
[4] Оболочка, Джон. Опции, фьючерсы и Другие Производные. 7-й редактор, Prentice Hall, 2009.
[5] Джонсон, Норман Ллойд, и др. Непрерывные Одномерные распределения. 2-й редактор, Вайли, 1994.
[6] Shreve, Стивен Э. Стохастическое исчисление для финансов. Спрингер, 2004.
drift
| diffusion
| sdeld
| simulate
| interpolate
| simByEuler
| nearcorr