Совокупные данные о расписании к ежедневной периодичности
Примените отдельные методы агрегации к связанным переменным в timetable
при поддержании непротиворечивости между агрегированными результатами для ежедневной периодичности.
Загрузите расписание (TT
) из симулированных данных о курсе акций и соответствующих логарифмических возвратов. Данные хранимы в TT
зарегистрирован неоднократно в течение дня в рабочие дни Нью-Йоркской фондовой биржи (NYSE) с 1 января 2018, до 31 декабря 2020. Расписание TT
также включает осведомленность бизнес-календаря NYSE. Если ваше расписание не считает в течение многих нерабочих дней (выходные, праздники и закрытия рынка), добавьте осведомленность бизнес-календаря при помощи addBusinessCalendar
сначала.
load('SimulatedStock.mat','TT'); head(TT)
ans=8×2 timetable
Time Price Log_Return
____________________ ______ __________
02-Jan-2018 11:52:11 100.71 0.0070749
02-Jan-2018 13:23:09 103.11 0.023551
02-Jan-2018 14:45:30 100.24 -0.028229
02-Jan-2018 15:30:48 101.37 0.01121
03-Jan-2018 10:02:21 101.81 0.0043311
03-Jan-2018 11:22:37 100.17 -0.01624
03-Jan-2018 14:45:20 99.66 -0.0051043
03-Jan-2018 14:55:39 100.12 0.0046051
Совокупные цены и логарифмические возвраты к ежедневной периодичности. Обеспечить непротиворечивость между ценами и возвращается, в течение любого данного торгового дня, агрегируйте цены путем создания отчетов о последней записанной цене при помощи "lastvalue"
и агрегат возвраты путем подведения итогов всех логарифмических возвратов при помощи "sum"
.
tt = convert2daily(TT,'Aggregation',["lastvalue" "sum"]); head(tt)
ans=8×2 timetable
Time Price Log_Return
___________ ______ __________
02-Jan-2018 101.37 0.013607
03-Jan-2018 100.12 -0.012408
04-Jan-2018 106.76 0.064214
05-Jan-2018 112.78 0.054856
08-Jan-2018 119.07 0.054273
09-Jan-2018 119.46 0.00327
10-Jan-2018 124.44 0.040842
11-Jan-2018 125.63 0.0095174
Чтобы проверить непротиворечивость, исследуйте расписания ввода и вывода на 2 и 3 января 2018.
TT(1:8,:) % Input data for 02-Jan-2018 and 03-Jan-2018
ans=8×2 timetable
Time Price Log_Return
____________________ ______ __________
02-Jan-2018 11:52:11 100.71 0.0070749
02-Jan-2018 13:23:09 103.11 0.023551
02-Jan-2018 14:45:30 100.24 -0.028229
02-Jan-2018 15:30:48 101.37 0.01121
03-Jan-2018 10:02:21 101.81 0.0043311
03-Jan-2018 11:22:37 100.17 -0.01624
03-Jan-2018 14:45:20 99.66 -0.0051043
03-Jan-2018 14:55:39 100.12 0.0046051
tt(1:2,:) % Return aggregated results
ans=2×2 timetable
Time Price Log_Return
___________ ______ __________
02-Jan-2018 101.37 0.013607
03-Jan-2018 100.12 -0.012408
В течение каждого рабочего дня в TT
, заметьте, что выход агрегировался, цена является последней ценой дня и что агрегированный возврат является суммой всех логарифмических возвратов. Кроме того, агрегированные возвраты сопоставимы с агрегированными ценами.
Например, агрегированный возврат на 3 января 2018, -0.012408
, который является логарифмическим возвратом, сопоставленным с последними ценами, зарегистрированными 2 и 3 января 2018 (то есть, -0.012408
= log(100.12)
- log(101.37)
).
Даты агрегированных результатов являются целыми датами, которые указывают на даты, для которых сообщают об агрегированных результатах.
TT1
— Данные, чтобы агрегироваться к ежедневной периодичностиДанные, чтобы агрегироваться к ежедневной периодичности в виде расписания.
Каждая переменная может быть числовым вектором (одномерный ряд) или числовая матрица (многомерный ряд).
Примечание
NaN
s указывают на отсутствующие значения.
Метки времени должны быть в порядке возрастания или убывания.
По умолчанию все дни являются рабочими днями. Если ваше расписание не считает в течение многих нерабочих дней (выходные, праздники и закрытия рынка), добавьте осведомленность бизнес-календаря при помощи addBusinessCalendar
сначала. Например, следующая команда добавляет логику бизнес-календаря, чтобы включать только рабочие дни NYSE.
TT = addBusinessCalendar(TT);
Типы данных: timetable
Задайте дополнительные пары аргументов как Name1=Value1,...,NameN=ValueN
, где Name
имя аргумента и Value
соответствующее значение. Аргументы name-value должны появиться после других аргументов, но порядок пар не имеет значения.
TT2 = convert2daily(TT1,'Aggregation',["lastvalue" "sum"])
Aggregation
— Суточный метод агрегации для данных в TT1
"lastvalue"
(значение по умолчанию) | "sum"
| "prod"
| "mean"
| "min"
| "max"
| "firstvalue"
| вектор символов | указатель на функцию | представляет вектор в виде строки | вектор ячейки из векторов символов или указателей на функциюСуточный метод агрегации для TT1
задавая, как данные агрегированы за рабочие дни в виде одного из следующих методов, вектора строки из методов или длины numVariables
вектор ячейки из методов, где numVariables
количество переменных в TT1
.
"sum"
— Суммируйте значения в каждом году или день.
"mean"
— Вычислите среднее значение значений в каждом году или день.
"prod"
— Вычислите продукт значений в каждом году или день.
"min"
— Вычислите минимум значений в каждом году или день.
"max"
— Вычислите максимум значений в каждом году или день.
"firstvalue"
— Используйте первое значение в каждом году или день.
"lastvalue"
— Используйте последнее значение в каждом году или день.
@customfcn
— Пользовательский метод агрегации, который принимает расписание и возвращает числовой скаляр (для одномерного ряда) или вектор-строка (для многомерного ряда). Функция должна принять пустые входные параметры []
.
Если вы задаете отдельный метод, convert2daily
применяет заданный метод ко всем временным рядам в TT1
. Если вы задаете вектор строки или вектор ячейки aggregation
, convert2daily
применяет агрегацию (
к j
)TT1 (:
; J
)convert2daily
применяет каждый метод агрегации по одному (для получения дополнительной информации, смотрите retime
). Например, рассмотрите ежедневное расписание, представляющее TT1
с тремя переменными.
Time AAA BBB CCC ____________________ ______ ______ ________________ 01-Jan-2018 09:45:47 100.00 200.00 300.00 400.00 01-Jan-2018 12:48:09 100.03 200.06 300.09 400.12 02-Jan-2018 10:27:32 100.07 200.14 300.21 400.28 02-Jan-2018 12:46:09 100.08 200.16 300.24 400.32 02-Jan-2018 14:14:13 100.25 200.50 300.75 401.00 02-Jan-2018 15:52:31 100.19 200.38 300.57 400.76 03-Jan-2018 09:47:11 100.54 201.08 301.62 402.16 03-Jan-2018 11:24:23 100.59 201.18 301.77 402.36 03-Jan-2018 14:41:17 101.40 202.80 304.20 405.60 03-Jan-2018 16:00:00 101.94 203.88 305.82 407.76 04-Jan-2018 09:55:51 102.53 205.06 307.59 410.12 04-Jan-2018 10:07:12 103.35 206.70 310.05 413.40 04-Jan-2018 14:26:23 103.40 206.80 310.20 413.60 05-Jan-2018 13:13:12 103.91 207.82 311.73 415.64 05-Jan-2018 14:57:53 103.89 207.78 311.67 415.56
TT2
(где 'lastvalue'
сообщается в течение каждого дня), следующие.Time AAA BBB CCC ___________ ______ ______ ________________ 01-Jan-2018 100.03 200.06 300.09 400.12 02-Jan-2018 100.19 200.38 300.57 400.76 03-Jan-2018 101.94 203.88 305.82 407.76 04-Jan-2018 103.40 206.80 310.20 413.60 05-Jan-2018 103.89 207.78 311.67 415.56
Все методы не используют недостающие данные (NaN
s) в прямых вычислениях агрегации на каждой переменной. Однако для ситуаций, в которых отсутствующие значения появляются в первой строке TT1
, отсутствующие значения могут также появиться в агрегированных результатах TT2
. Чтобы обратиться к недостающим данным, запишите и задайте пользовательский метод агрегации (указатель на функцию), который поддерживает недостающие данные.
Типы данных: char |
string
| cell
| function_handle
TT2
— Ежедневные данныеЕжедневные данные, возвращенные как расписание. Временная договоренность TT1
и TT2
то же самое.
Если переменная TT1
не имеет никаких записей в течение рабочего дня в промежутке времени выборки, convert2daily
возвращает NaN
в течение того переменного и рабочего дня в TT2
.
Первое свидание в TT2
первая бизнес-дата на или после первого свидания в TT1
. Последняя дата в TT2
последняя бизнес-дата на или перед последней датой в TT1
.
convert2weekly
| convert2monthly
| convert2quarterly
| convert2semiannual
| convert2annual
| timetable
| addBusinessCalendar
У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.