Совокупные данные о расписании к полугодовой периодичности
Примените отдельные методы агрегации к связанным переменным в timetable при поддержании непротиворечивости между агрегированными результатами при преобразовании в полугодовую периодичность. Можно использовать convert2semiannual агрегировать и внутриежедневные данные и агрегированные ежеквартальные данные. Эти методы приводят к эквивалентным полугодовым агрегатам.
Загрузите расписание (TT) из симулированных данных о курсе акций и соответствующих логарифмических возвратов. Данные хранимы в TT зарегистрирован неоднократно в течение дня в рабочие дни Нью-Йоркской фондовой биржи (NYSE) с 1 января 2018 до декабря 31,2020. Расписание TT также включает осведомленность бизнес-календаря NYSE. Если ваше расписание не считает в течение многих нерабочих дней (выходные, праздники и закрытия рынка), добавьте осведомленность бизнес-календаря при помощи addBusinessCalendar сначала.
load('SimulatedStock.mat','TT'); head(TT)
ans=8×2 timetable
Time Price Log_Return
____________________ ______ __________
02-Jan-2018 11:52:11 100.71 0.0070749
02-Jan-2018 13:23:09 103.11 0.023551
02-Jan-2018 14:45:30 100.24 -0.028229
02-Jan-2018 15:30:48 101.37 0.01121
03-Jan-2018 10:02:21 101.81 0.0043311
03-Jan-2018 11:22:37 100.17 -0.01624
03-Jan-2018 14:45:20 99.66 -0.0051043
03-Jan-2018 14:55:39 100.12 0.0046051
Используйте convert2quarterly к совокупным внутриежедневным ценам и возвращается к ежеквартальной периодичности. Обеспечить непротиворечивость между ценами и возвращается, для любой данной четверти, совокупных цен путем создания отчетов о последней записанной цене с помощью "lastvalue" и агрегат возвращается путем подведения итогов всех логарифмических возвратов с помощью "sum".
TT1 = convert2quarterly(TT,'Aggregation',["lastvalue" "sum"])
TT1=12×2 timetable
Time Price Log_Return
___________ ______ __________
29-Mar-2018 108.9 0.08526
29-Jun-2018 96.24 -0.12358
28-Sep-2018 111.37 0.14601
31-Dec-2018 92.72 -0.18327
29-Mar-2019 78.7 -0.16394
28-Jun-2019 110.54 0.33973
30-Sep-2019 180.13 0.4883
31-Dec-2019 163.65 -0.095949
31-Mar-2020 177.46 0.081015
30-Jun-2020 168.96 -0.049083
30-Sep-2020 260.77 0.43398
31-Dec-2020 274.75 0.052223
Используйте convert2semiannual агрегировать данные к полугодовой периодичности и сравнить результаты двух разных подходов. Первый подход вычисляет полугодовые результаты путем агрегации ежеквартального издания, агрегируется, и второй подход вычисляет полугодовые результаты путем прямой агрегации исходных внутриежедневных данных. Обратите внимание на то, что convert2semiannual отчеты заканчиваются в прошлый рабочий день июня и декабря.
tt1 = convert2semiannual(TT1,'Aggregation',["lastvalue" "sum"]) % Quarterly to semiannual
tt1=6×2 timetable
Time Price Log_Return
___________ ______ __________
29-Jun-2018 96.24 -0.038325
31-Dec-2018 92.72 -0.037261
28-Jun-2019 110.54 0.17579
31-Dec-2019 163.65 0.39235
30-Jun-2020 168.96 0.031932
31-Dec-2020 274.75 0.4862
tt2 = convert2semiannual(TT ,'Aggregation',["lastvalue" "sum"]) % Intra-daily to semiannual
tt2=6×2 timetable
Time Price Log_Return
___________ ______ __________
29-Jun-2018 96.24 -0.038325
31-Dec-2018 92.72 -0.037261
28-Jun-2019 110.54 0.17579
31-Dec-2019 163.65 0.39235
30-Jun-2020 168.96 0.031932
31-Dec-2020 274.75 0.4862
Результатами двух подходов является то же самое, потому что каждый полугодовой период содержит точно два календарных квартала.
TT1 — Данные, чтобы агрегироваться к полугодовой периодичностиДанные, чтобы агрегироваться к полугодовой периодичности в виде расписания.
Каждая переменная может быть числовым вектором (одномерный ряд) или числовая матрица (многомерный ряд).
Примечание
NaNs указывают на отсутствующие значения.
Метки времени должны быть в порядке возрастания или убывания.
По умолчанию все дни являются рабочими днями. Если ваше расписание не считает в течение многих нерабочих дней (выходные, праздники и закрытия рынка), добавьте осведомленность бизнес-календаря при помощи addBusinessCalendar сначала. Например, следующая команда добавляет логику бизнес-календаря, чтобы включать только рабочие дни NYSE.
TT = addBusinessCalendar(TT);
Типы данных: timetable
Задайте дополнительные пары аргументов как Name1=Value1,...,NameN=ValueN, где Name имя аргумента и Value соответствующее значение. Аргументы name-value должны появиться после других аргументов, но порядок пар не имеет значения.
TT2 = convert2semiannual(TT1,'Aggregation',["lastvalue" "sum"])Aggregation — Метод агрегации в течение полугодового периода к полугодовой периодичности (междневная агрегация)"lastvalue"
(значение по умолчанию) | "sum"
| "prod" | "mean" | "min" | "max" | "firstvalue" | вектор символов | указатель на функцию | представляет вектор в виде строки | вектор ячейки из векторов символов или указателей на функциюМетод агрегации для TT1 определение, как данные агрегированы за рабочие дни в полугодовой период к полугодовой агрегации периодичности в виде одного из следующих методов, вектора строки из методов или длины numVariables вектор ячейки из методов, где numVariables количество переменных в TT1.
"sum" — Суммируйте значения в каждом году или день.
"mean" — Вычислите среднее значение значений в каждом году или день.
"prod" — Вычислите продукт значений в каждом году или день.
"min" — Вычислите минимум значений в каждом году или день.
"max" — Вычислите максимум значений в каждом году или день.
"firstvalue" — Используйте первое значение в каждом году или день.
"lastvalue" — Используйте последнее значение в каждом году или день.
@customfcn — Пользовательский метод агрегации, который принимает табличную переменную и возвращает числовой скаляр (для одномерного ряда) или вектор-строка (для многомерного ряда). Функция должна принять пустые входные параметры [].
Если вы задаете отдельный метод, convert2semiannual применяет заданный метод ко всем временным рядам в TT1. Если вы задаете вектор строки или вектор ячейки aggregation, convert2semiannual применяет агрегацию ( к j)TT1 (: ; J)convert2semiannual применяет каждый метод агрегации по одному (для получения дополнительной информации, смотрите retime). Например, рассмотрите ежедневное расписание, представляющее TT1 с тремя переменными.
Time AAA BBB CCC
___________ ______ ______ _________________
01-Jan-2018 100.00 200.00 300.00 400.00
02-Jan-2018 100.02 200.04 300.06 400.08
03-Jan-2018 99.96 199.92 299.88 399.84
. . . . .
. . . . .
. . . . .
28-Jun-2018 69.63 139.26 208.89 278.52
29-Jun-2018 70.15 140.3 210.45 280.60
30-Jun-2018 75.77 151.54 227.31 303.08
01-Jul-2018 75.68 151.36 227.04 302.72
02-Jul-2018 71.34 142.68 214.02 285.36
03-Jul-2018 69.25 138.50 207.75 277.00
. . . . .
. . . . .
. . . . .
29-Dec-2018 249.16 498.32 747.48 996.64
30-Dec-2018 250.21 500.42 750.63 1000.84
31-Dec-2018 256.75 513.50 770.25 1027.00TT2 (в котором все дни являются рабочими днями и 'lastvalue' сообщается в прошлый рабочий день после каждого полугодового периода), следующие. Time AAA BBB CCC
___________ ______ ______ ________________
30-Jun-2018 75.77 151.54 227.31 303.08
31-Dec-2018 256.75 513.50 770.25 1027.00Все методы не используют недостающие данные (NaNs) в прямых вычислениях агрегации на каждой переменной. Однако для ситуаций, в которых отсутствующие значения появляются в первой строке TT1, отсутствующие значения могут также появиться в агрегированных результатах TT2. Чтобы обратиться к недостающим данным, запишите и задайте пользовательский метод агрегации (указатель на функцию), который поддерживает недостающие данные.
Типы данных: char | string | cell | function_handle
Daily — Суточный метод агрегации для TT1"lastvalue" (значение по умолчанию) | "sum" | "prod" | "mean" | "min" | "max" | "firstvalue" | вектор символов | указатель на функцию | представляет вектор в виде строки | вектор ячейки из векторов символов или указателей на функциюСуточный метод агрегации для TT1В виде метода агрегации, вектора строки из методов или длины numVariables вектор ячейки из методов. Для получения дополнительной информации о поддерживаемых методах и поведениях, смотрите 'Aggregation' аргумент значения имени.
Типы данных: char | string | cell | function_handle
TT2 — Полугодовые данныеПолугодовые данные, возвращенные как расписание. convert2semiannual сообщают полугодовые результаты агрегации в прошлый рабочий день июня и декабря. Функция возвращает NaNs для переменных в TT2 в течение полугодовых периодов, когда никакие данные не зарегистрированы ни в какие рабочие дни для тех переменных в TT1. Если TT1 в порядке возрастания, так также TT2, и если TT1 в порядке убывания, так также TT2.
Первое свидание в TT2 последняя бизнес-дата полугодового периода в который первое свидание в TT1 происходит, обеспечил TT1 имеет бизнес-даты в тот полугодовой период, в противном случае первое свидание в TT2 следующий конец полугодовой даты бизнеса периода.
Последняя дата в TT2 последняя бизнес-дата полугодового периода в который последняя дата в TT1 происходит, обеспечил TT1 имеет бизнес-даты в тот полугодовой период, в противном случае последнюю дату в TT2 предыдущий конец полугодовой даты бизнеса периода.
convert2daily | convert2weekly | convert2quarterly | convert2monthly | convert2annual | timetable | addBusinessCalendar
У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.