ecmnhess

Гессиан отрицательной функции логарифмической правдоподобности

Описание

пример

Hessian = ecmnhess(Data,Covariance) вычисляет NUMPARAMS- NUMPARAMS Матрица гессиана наблюдаемой отрицательной логарифмической правдоподобности функционирует на основе текущих оценок параметра.

Используйте ecmnhess после оценки среднего значения и ковариации Data с ecmnmle.

пример

Hessian = ecmnhess(___,InvCovar,MatrixType) добавляют дополнительные аргументы для InvCovar и MatrixType.

Примеры

свернуть все

В этом примере показано, как вычислить Гессиан для отрицательной функции логарифмической правдоподобности в течение пяти лет ежедневных данных о совокупном доходе для 12 запасов компьютерной технологии с шестью оборудованием и шестью компаниями-разработчиками программного обеспечения

load ecmtechdemo.mat

Период времени для этих данных расширяет с 19 апреля 2000 до 18 апреля 2005. Шестым запасом в Активах является Google (GOOG), который начал торговать 19 августа 2004. Так, все возвращается, до 20 августа 2004 отсутствуют и представленные как NaNs. Кроме того, Amazon (AMZN) имел несколько дней с отсутствующими значениями, рассеянными в течение прошлых пяти лет.

[ECMMean, ECMCovar] = ecmnmle(Data)
ECMMean = 12×1

    0.0008
    0.0008
   -0.0005
    0.0002
    0.0011
    0.0038
   -0.0003
   -0.0000
   -0.0003
   -0.0000
      ⋮

ECMCovar = 12×12

    0.0012    0.0005    0.0006    0.0005    0.0005    0.0003    0.0005    0.0003    0.0006    0.0003    0.0005    0.0006
    0.0005    0.0024    0.0007    0.0006    0.0010    0.0004    0.0005    0.0003    0.0006    0.0004    0.0006    0.0012
    0.0006    0.0007    0.0013    0.0007    0.0007    0.0003    0.0006    0.0004    0.0008    0.0005    0.0008    0.0008
    0.0005    0.0006    0.0007    0.0009    0.0006    0.0002    0.0005    0.0003    0.0007    0.0004    0.0005    0.0007
    0.0005    0.0010    0.0007    0.0006    0.0016    0.0006    0.0005    0.0003    0.0006    0.0004    0.0007    0.0011
    0.0003    0.0004    0.0003    0.0002    0.0006    0.0022    0.0001    0.0002    0.0002    0.0001    0.0003    0.0016
    0.0005    0.0005    0.0006    0.0005    0.0005    0.0001    0.0009    0.0003    0.0005    0.0004    0.0005    0.0006
    0.0003    0.0003    0.0004    0.0003    0.0003    0.0002    0.0003    0.0005    0.0004    0.0003    0.0004    0.0004
    0.0006    0.0006    0.0008    0.0007    0.0006    0.0002    0.0005    0.0004    0.0011    0.0005    0.0007    0.0007
    0.0003    0.0004    0.0005    0.0004    0.0004    0.0001    0.0004    0.0003    0.0005    0.0006    0.0004    0.0005
      ⋮

Выполнять отрицательную функцию логарифмической правдоподобности для ecmnmle, используйте ecmnhess на основе текущего наибольшего правдоподобия параметр оценивает для ECMCovar.

Hessian = ecmnhess(Data,ECMCovar)
Hessian = 90×90
107 ×

    0.0001    0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000    0.0000   -0.0000   -0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
    0.0000    0.0001   -0.0000   -0.0000   -0.0000    0.0000   -0.0000    0.0000   -0.0000   -0.0000    0.0000   -0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
   -0.0000   -0.0000    0.0002   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
   -0.0000   -0.0000   -0.0000    0.0003   -0.0000    0.0000   -0.0000   -0.0000   -0.0001   -0.0001   -0.0000   -0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
   -0.0000   -0.0000   -0.0000   -0.0000    0.0001   -0.0000   -0.0000   -0.0000    0.0000   -0.0000   -0.0000   -0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
   -0.0000    0.0000   -0.0000    0.0000   -0.0000    0.0000    0.0000   -0.0000    0.0000    0.0000    0.0000   -0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000    0.0000    0.0002   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
   -0.0000    0.0000   -0.0000   -0.0000   -0.0000   -0.0000   -0.0000    0.0004   -0.0000   -0.0000   -0.0000   -0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
   -0.0000   -0.0000   -0.0000   -0.0001    0.0000    0.0000   -0.0000   -0.0000    0.0002   -0.0001   -0.0000   -0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
    0.0000   -0.0000   -0.0000   -0.0001   -0.0000    0.0000   -0.0000   -0.0000   -0.0001    0.0004   -0.0000   -0.0000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
      ⋮

Входные параметры

свернуть все

Данные в виде NUMSAMPLES- NUMSERIES матрица с NUMSAMPLES выборки NUMSERIES- размерный случайный вектор. Отсутствующие значения обозначаются NaNs.

Типы данных: double

Параметр наибольшего правдоподобия оценивает для ковариации Data использование алгоритма ECM в виде NUMSERIES- NUMSERIES матрица.

(Необязательно) Инверсия ковариационной матрицы в виде матричного использования inv как:

inv(Covariance)

Типы данных: double

(Необязательно) Матричный формат в виде вектора символов со значением:

  • 'full' — Вычисляет полную матрицу Гессиана.

  • 'meanonly' — Вычисляет только компоненты матрицы Гессиана, сопоставленной со средним значением.

Типы данных: char

Выходные аргументы

свернуть все

Матрица гессиана, возвращенная как NUMPARAMSNUMPARAMS матрица наблюдаемой логарифмической правдоподобности функционирует на основе текущих оценок параметра, где NUMPARAMS = NUMSERIES * (NUMSERIES + 3)/2 если MatrixFormat = 'full'. Если MatrixFormat = 'meanonly', затем NUMPARAMS = NUMSERIES.

Представлено до R2006a