Подбирайте модель с одним отсеком индивидууму профиль PK

Фон

В этом примере показано, как соответствовать PK индивидуума профилируют данные к модели с одним отсеком и оценить фармакокинетические параметры.

Предположим, что вы имеете данные о концентрации плазмы препарата от индивидуума и хотите оценить объем центрального отсека и разрешения. Примите, что концентрация препарата по сравнению с профилем времени следует за моноэкспоненциальным снижением Ct=C0e-ket, где Ct концентрация препарата во время t, C0 начальная концентрация, и ke константа скорости устранения, которая зависит от разрешения и объема центрального отсека ke=Cl/V.

Синтетические данные в этом примере были сгенерированы с помощью следующей модели, параметров и дозы:

  • Модель с одним отсеком с болюсным введением и устранением первого порядка

  • Объем центрального отсека (Central) = 1,70 литра

  • Параметр разрешения (Cl_Central) = 0,55 литра/час

  • Постоянная ошибочная модель

  • Доза шарика 10 мг

Загрузите данные и визуализируйте

Данные хранятся как таблица с переменными Time и Conc это представляет ход времени плазменной концентрации индивидуума после внутривенного администрирования шарика, измеренного в 13 различных моментах времени. Переменные модули для Time и Conc час и миллиграмм/литр, соответственно.

clear all
load('data15.mat')
plot(data.Time,data.Conc,'b+')
xlabel('Time (hour)');
ylabel('Drug Concentration (milligram/liter)');

Figure contains an axes object. The axes object contains an object of type line.

Преобразуйте в groupedData Формат

Преобразуйте набор данных в groupedData объект, который является необходимым форматом данных для подходящего функционального sbiofit для дальнейшего использования. groupedData объект также позволяет вам установить независимую переменную и имена переменных группы (если они существуют). Установите модули Time и Conc переменные. Модули являются дополнительными и только необходимыми для UnitConversion покажите, который автоматически преобразует соответствие с физическими количествами в одну сопоставимую модульную систему.

gData = groupedData(data);
gData.Properties.VariableUnits = {'hour','milligram/liter'};
gData.Properties
ans = struct with fields:
                Description: ''
                   UserData: []
             DimensionNames: {'Row'  'Variables'}
              VariableNames: {'Time'  'Conc'}
       VariableDescriptions: {}
              VariableUnits: {'hour'  'milligram/liter'}
         VariableContinuity: []
                   RowNames: {}
           CustomProperties: [1x1 matlab.tabular.CustomProperties]
          GroupVariableName: ''
    IndependentVariableName: 'Time'

groupedData автоматически определите имя IndependentVariableName свойство к Time переменная данных.

Создайте модель с одним отсеком

Пользуйтесь встроенной библиотекой PK, чтобы создать модель с одним отсеком с болюсным введением и устранением первого порядка, где уровень устранения зависит от разрешения и объема центрального отсека. Используйте configset объект включить модульное преобразование.

pkmd                    = PKModelDesign;
pkc1                    = addCompartment(pkmd,'Central');
pkc1.DosingType         = 'Bolus';
pkc1.EliminationType    = 'linear-clearance';
pkc1.HasResponseVariable = true;
model                   = construct(pkmd);
configset               = getconfigset(model);
configset.CompileOptions.UnitConversion = true;

Для получения дополнительной информации при создании разделенных на отсеки моделей PK с помощью SimBiology® встроенная библиотека, смотрите, Создают Фармакокинетические Модели.

Задайте дозирование

Задайте одну дозу шарика 10 миллиграммов, данных во время = 0. Для получения дополнительной информации при подготовке различных расписаний дозирования, смотрите Дозы в Моделях SimBiology.

dose                = sbiodose('dose');
dose.TargetName     = 'Drug_Central';
dose.StartTime      = 0;
dose.Amount         = 10;
dose.AmountUnits    = 'milligram';
dose.TimeUnits      = 'hour';

Сопоставьте данные об ответе с соответствующим компонентом модели

Данные содержат данные о концентрации препарата, хранимые в Conc переменная. Эти данные соответствуют Drug_Central разновидности в модели. Поэтому сопоставьте данные с Drug_Central можно следующим образом.

responseMap = {'Drug_Central = Conc'};

Задайте параметры, чтобы оценить

Параметры, чтобы поместиться в эту модель являются объемом центрального (Центрального) отсека и уровень раскрываемости преступлений (Cl_Central). В этом случае задайте логарифмическое преобразование для этих биологических параметров, поскольку они ограничиваются быть положительными. estimatedInfo объект позволяет вам указать, что параметр преобразовывает, начальные значения и границы параметра в случае необходимости.

paramsToEstimate    = {'log(Central)','log(Cl_Central)'};
estimatedParams     = estimatedInfo(paramsToEstimate,'InitialValue',[1 1],'Bounds',[1 5;0.5 2]);

Оцените параметры

Теперь, когда вы задали модель с одним отсеком, данные, чтобы соответствовать, сопоставленные данные об ответе, параметры, чтобы оценить, и дозирование, используют sbiofit оценить параметры. Функция оценки по умолчанию, что sbiofit использование изменится, в зависимости от которого тулбоксы доступны. Чтобы видеть, какая функция использовалась во время подбора кривой, проверяйте EstimationFunction свойство соответствующего объекта результатов.

fitConst = sbiofit(model,gData,responseMap,estimatedParams,dose);

Отобразите предполагаемые параметры и постройте результаты

Заметьте, что оценки параметра не были далеки от истинных значений (1.70 и 0.55), которые использовались, чтобы сгенерировать данные. Можно также попробовать различные ошибочные модели, чтобы видеть, могли ли они далее улучшить оценки параметра.

fitConst.ParameterEstimates
ans=2×4 table
         Name         Estimate    StandardError      Bounds  
    ______________    ________    _____________    __________

    {'Central'   }     1.6993       0.034821         1      5
    {'Cl_Central'}    0.53358        0.01968       0.5      2

s.Labels.XLabel     = 'Time (hour)';
s.Labels.YLabel     = 'Concentration (milligram/liter)';
plot(fitConst,'AxesStyle',s);

Figure contains an axes object. The axes object contains 2 objects of type line.

Используйте различные ошибочные модели

Попробуйте три других поддерживаемых ошибочных модели (пропорциональный, комбинация постоянных и пропорциональных ошибочных моделей и экспоненциал).

fitProp = sbiofit(model,gData,responseMap,estimatedParams,dose,...
                      'ErrorModel','proportional');
fitExp  = sbiofit(model,gData,responseMap,estimatedParams,dose,...
                      'ErrorModel','exponential');
fitComb = sbiofit(model,gData,responseMap,estimatedParams,dose,...
                      'ErrorModel','combined');

Используйте веса вместо ошибочной модели

Можно задать веса как числовую матрицу, где количество столбцов соответствует количеству ответов. Установка всех весов к 1 эквивалентна постоянной ошибочной модели.

weightsNumeric = ones(size(gData.Conc));
fitWeightsNumeric = sbiofit(model,gData,responseMap,estimatedParams,dose,'Weights',weightsNumeric);

В качестве альтернативы можно использовать указатель на функцию, который принимает вектор из предсказанных значений отклика и возвращает вектор из весов. В этом примере используйте указатель на функцию, который эквивалентен пропорциональной ошибочной модели.

weightsFunction = @(y) 1./y.^2;
fitWeightsFunction = sbiofit(model,gData,responseMap,estimatedParams,dose,'Weights',weightsFunction);

Сравните информационные критерии выбора модели

Сравните логарифмическую правдоподобность, AIC и значения BIC каждой модели, чтобы видеть, какая ошибочная модель лучше всего подбирает данным. Большее значение вероятности указывает, что соответствующая модель подбирает модель лучше. Для AIC и BIC, меньшие значения лучше.

allResults = [fitConst,fitWeightsNumeric,fitWeightsFunction,fitProp,fitExp,fitComb];
errorModelNames = {'constant error model','equal weights','proportional weights', ...
                   'proportional error model','exponential error model',...
                   'combined error model'};
LogLikelihood = [allResults.LogLikelihood]';
AIC = [allResults.AIC]';
BIC = [allResults.BIC]';
t = table(LogLikelihood,AIC,BIC);
t.Properties.RowNames = errorModelNames;
t
t=6×3 table
                                LogLikelihood      AIC        BIC  
                                _____________    _______    _______

    constant error model            3.9866       -3.9732    -2.8433
    equal weights                   3.9866       -3.9732    -2.8433
    proportional weights           -3.8472        11.694     12.824
    proportional error model       -3.8257        11.651     12.781
    exponential error model         1.1984        1.6032     2.7331
    combined error model            3.9163       -3.8326    -2.7027

На основе информационных критериев постоянная ошибочная модель (или равные веса) соответствует данным лучше всего, поскольку это имеет самое большое значение логарифмической правдоподобности и самый маленький AIC и BIC.

Отобразите предполагаемые значения параметров

Покажите предполагаемые значения параметров каждой модели.

Estimated_Central       = zeros(6,1);
Estimated_Cl_Central    = zeros(6,1);
t2 = table(Estimated_Central,Estimated_Cl_Central);
t2.Properties.RowNames = errorModelNames;
for i = 1:height(t2)
    t2{i,1} = allResults(i).ParameterEstimates.Estimate(1);
    t2{i,2} = allResults(i).ParameterEstimates.Estimate(2);
end
t2
t2=6×2 table
                                Estimated_Central    Estimated_Cl_Central
                                _________________    ____________________

    constant error model             1.6993                0.53358       
    equal weights                    1.6993                0.53358       
    proportional weights             1.9045                0.51734       
    proportional error model         1.8777                0.51147       
    exponential error model          1.7872                0.51701       
    combined error model             1.7008                0.53271       

Заключение

Этот пример показал, как оценить параметры PK, а именно, объем центрального отсека и параметр разрешения индивидуума, путем подбора кривой данным о профиле PK к модели с одним отсеком. Вы сравнили информационные критерии каждой модели и оценили, что значения параметров различных ошибочных моделей видели, какая модель лучше всего объяснила данные. Финал соответствовал результатам, предложенным обоих, которых постоянные и объединенные ошибочные модели предоставили, самые близкие оценки к значениям параметров раньше генерировали данные. Однако постоянная ошибочная модель является лучшей моделью, как обозначено логарифмической правдоподобностью, AIC и критериями информации о BIC.

Смотрите также

Похожие темы