Класс: dssm
Предскажите состояния и наблюдения за рассеянными моделями в пространстве состояний
[Y,YMSE]
= forecast(Mdl,numPeriods,Y0)
[Y,YMSE]
= forecast(Mdl,numPeriods,Y0,Name,Value)
[Y,YMSE,X,XMSE]
= forecast(___)
[
возвращает предсказанные наблюдения (Y
,YMSE
]
= forecast(Mdl
,numPeriods
,Y0
)Y
) и их соответствующие отклонения (YMSE
) от прогнозирования рассеянной модели в пространстве состояний Mdl
с помощью горизонта прогноза numPeriods
и наблюдений в выборке Y0
.
[
дополнительные опции использования заданы одним или несколькими аргументами пары Y
,YMSE
]
= forecast(Mdl
,numPeriods
,Y0
,Name,Value
)Name,Value
. Например, для моделей в пространстве состояний, которые включают компонент линейной регрессии в модель наблюдения, включайте данные о предикторе в выборке, данные о предикторе для горизонта прогноза и коэффициент регрессии.
Mdl
— Рассеянная модель в пространстве состоянийdssm
Рассеянная модель в пространстве состояний, заданная как объект модели dssm
, возвращенный dssm
или estimate
.
Если Mdl
не полностью задан (то есть, Mdl
содержит неизвестные параметры), то задайте значения для неизвестных параметров с помощью аргумента пары "имя-значение" '
Params
'
. В противном случае программное обеспечение выдает ошибку. estimate
возвращает полностью заданные модели в пространстве состояний.
Mdl
не хранит наблюдаемые ответы или данные о предикторе. Снабдите данными везде, где необходимое использование соответствующего входа или аргументов пары "имя-значение".
numPeriods
— Предскажите горизонтПредскажите горизонт, заданный как положительное целое число. Таким образом, программное обеспечение возвращается 1.., прогнозы numPeriods
.
Типы данных: double
Y0
В выборке, наблюдаемые ответыВ выборке, наблюдаемые ответы, заданные как вектор ячейки числовых векторов или матрицы.
Если Mdl
независим от времени, то Y0
является T-by-n числовая матрица, где каждая строка соответствует периоду, и каждый столбец соответствует конкретному наблюдению в модели. Поэтому T является объемом выборки, и m является количеством наблюдений на период. Последняя строка Y
содержит последние наблюдения.
Если Mdl
время, отличаясь относительно уравнения наблюдения, то Y
является T-by-1 вектор ячейки. Каждый элемент вектора ячейки соответствует периоду и содержит nt - размерный вектор наблюдений в течение того периода. Соответствующие размерности содействующих матриц в Mdl.C{t}
и Mdl.D{t}
должны быть сопоставимы с матрицей в Y{t}
в течение всех периодов. Последняя ячейка Y
содержит последние наблюдения.
Если Mdl
является предполагаемой моделью в пространстве состояний (то есть, возвращенный estimate
), то это - лучшая практика установить Y0
на тот же набор данных, что вы раньше соответствовали Mdl
.
Элементы NaN
указывают на недостающие наблюдения. Для получения дополнительной информации о том, как Фильтр Калмана размещает недостающие наблюдения, см. Алгоритмы.
Типы данных: double
| cell
Укажите необязательные аргументы в виде пар ""имя, значение"", разделенных запятыми.
Имя (Name) — это имя аргумента, а значение (Value) — соответствующее значение.
Name
должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.
'Beta',beta,'Predictors',Z
задает, чтобы выкачать наблюдения компонентом регрессии, состоявшим из данных о предикторе Z
и матрица коэффициентов beta
.A
Горизонт прогноза, изменение состояния, содействующие матрицыГоризонт прогноза, изменение состояния, содействующие матрицы, заданные как пара, разделенная запятой, состоящая из 'A'
и вектор ячейки числовых матриц.
A
должен содержать, по крайней мере, ячейки numPeriods
. Каждая ячейка должна содержать матрицу, задающую как переход состояний в горизонте прогноза. Если длина A
больше, чем numPeriods
, то программное обеспечение использует первые ячейки numPeriods
. Последняя ячейка указывает на последний период в горизонте прогноза.
Если Mdl
независим от времени относительно состояний, то каждая ячейка A
должна содержать m-by-m матрица, где m является количеством состояний в выборке на период. По умолчанию программное обеспечение использует Mdl.A
в горизонте прогноза.
Если Mdl
время, отличаясь относительно состояний, то размерности матриц в ячейках A
могут отличаться, но размерности каждой матрицы должны быть сопоставимы с матрицами в B
и C
в соответствующие периоды. По умолчанию программное обеспечение использует Mdl.A{end}
в горизонте прогноза.
Матрицы в A
не могут содержать значения NaN
.
Типы данных: cell
B
Горизонт прогноза, загрузка воздействия состояния, содействующие матрицыГоризонт прогноза, загрузка воздействия состояния, содействующие матрицы, заданные как пара, разделенная запятой, состоящая из 'B'
и вектор ячейки матриц.
B
должен содержать, по крайней мере, ячейки numPeriods
. Каждая ячейка должна содержать матрицу, задающую как переход состояний в горизонте прогноза. Если длина B
больше, чем numPeriods
, то программное обеспечение использует первые ячейки numPeriods
. Последняя ячейка указывает на последний период в горизонте прогноза.
Если Mdl
независим от времени относительно состояний и воздействий состояния, то каждая ячейка B
должна содержать m-by-k матрица, где m является количеством состояний в выборке на период, и k является количеством воздействий состояния, в выборке на период. По умолчанию программное обеспечение использует Mdl.B
в горизонте прогноза.
Если Mdl
время, отличаясь, то размерности матриц в ячейках B
могут отличаться, но размерности каждой матрицы должны быть сопоставимы с матрицами в A
в соответствующие периоды. По умолчанию программное обеспечение использует Mdl.B{end}
в горизонте прогноза.
Матрицы в B
не могут содержать значения NaN
.
Типы данных: cell
C
Горизонт прогноза, чувствительность измерения, содействующие матрицыГоризонт прогноза, чувствительность измерения, содействующие матрицы, заданные как пара, разделенная запятой, состоящая из 'C'
и вектор ячейки матриц.
C
должен содержать, по крайней мере, ячейки numPeriods
. Каждая ячейка должна содержать матрицу, задающую как переход состояний в горизонте прогноза. Если длина C
больше, чем numPeriods
, то программное обеспечение использует первые ячейки numPeriods
. Последняя ячейка указывает на последний период в горизонте прогноза.
Если Mdl
независим от времени относительно состояний и наблюдений, то каждая ячейка C
должна содержать n-by-m матрица, где n является количеством наблюдений в выборке на период, и m является количеством состояний в выборке на период. По умолчанию программное обеспечение использует Mdl.C
в горизонте прогноза.
Если Mdl
время, отличаясь относительно состояний или наблюдений, то размерности матриц в ячейках C
могут отличаться, но размерности каждой матрицы должны быть сопоставимы с матрицами в A
и D
в соответствующие периоды. По умолчанию программное обеспечение использует Mdl.C{end}
в горизонте прогноза.
Матрицы в C
не могут содержать значения NaN
.
Типы данных: cell
D
Горизонт прогноза, инновации наблюдения, содействующие матрицыГоризонт прогноза, инновации наблюдения, содействующие матрицы, заданные как пара, разделенная запятой, состоящая из 'D'
и вектор ячейки матриц.
D
должен содержать, по крайней мере, ячейки numPeriods
. Каждая ячейка должна содержать матрицу, задающую как переход состояний в горизонте прогноза. Если длина D
больше, чем numPeriods
, то программное обеспечение использует первые ячейки numPeriods
. Последняя ячейка указывает на последний период в горизонте прогноза.
Если Mdl
независим от времени относительно наблюдений и инноваций наблюдения, то каждая ячейка D
должна содержать n-by-h матрица, где n является количеством наблюдений в выборке на период, и h является количеством в выборке, инноваций наблюдения на период. По умолчанию программное обеспечение использует Mdl.D
в горизонте прогноза.
Если Mdl
время, отличаясь относительно наблюдений или инноваций наблюдения, то размерности матриц в ячейках D
могут отличаться, но размерности каждой матрицы должны быть сопоставимы с матрицами в C
в соответствующие периоды. По умолчанию программное обеспечение использует Mdl.D{end}
в горизонте прогноза.
Матрицы в D
не могут содержать значения NaN
.
Типы данных: cell
\beta
Коэффициенты регрессии[]
(значение по умолчанию) | числовая матрицаКоэффициенты регрессии, соответствующие переменным прогноза, заданным как пара, разделенная запятой, состоящая из 'Beta'
и d-by-n числовая матрица. d является количеством переменных прогноза (см. Predictors0
и PredictorsF
), и n является количеством наблюдаемого ряда ответа (см. Y0
).
Если вы задаете Beta
, то необходимо также задать Predictors0
и PredictorsF
.
Если Mdl
является предполагаемой моделью в пространстве состояний, то задайте предполагаемые коэффициенты регрессии, сохраненные в Mdl.estParams
.
По умолчанию программное обеспечение исключает компонент регрессии из модели в пространстве состояний.
'Predictors0'
— В выборке, переменные прогноза в уравнении наблюдения модели в пространстве состояний[]
(значение по умолчанию) | матрицаВ выборке, переменные прогноза в уравнении наблюдения модели в пространстве состояний, заданном как пара, разделенная запятой, состоящая из 'Predictors0'
и матрицы. Столбцы Predictors0
соответствуют отдельным переменным прогноза. Predictors0
должен иметь строки T, где строка t соответствует наблюдаемым предикторам в период t (Zt). Расширенное уравнение наблюдения
Другими словами, программное обеспечение выкачивает наблюдения с помощью компонента регрессии. β является независимым от времени вектором коэффициентов регрессии, которые программное обеспечение оценивает со всеми другими параметрами.
Если существуют наблюдения n на период, то регрессы программного обеспечения весь ряд предиктора на каждое наблюдение.
Если вы задаете Predictors0
, то Mdl
должен быть независим от времени. В противном случае программное обеспечение возвращает ошибку.
Если вы задаете Predictors0
, то необходимо также задать Beta
и PredictorsF
.
Если Mdl
является предполагаемой моделью в пространстве состояний (то есть, возвращенный estimate
), то это - лучшая практика установить Predictors0
на тот же набор данных предиктора, что вы раньше соответствовали Mdl
.
По умолчанию программное обеспечение исключает компонент регрессии из модели в пространстве состояний.
Типы данных: double
'PredictorsF'
— Горизонт прогноза, переменные прогноза в уравнении наблюдения модели в пространстве состояний[]
(значение по умолчанию) | числовая матрицаВ выборке, переменные прогноза в уравнении наблюдения модели в пространстве состояний, заданном как пара, разделенная запятой, состоящая из 'Predictors0'
и T-by-d числовая матрица. T является количеством периодов в выборке, и d является количеством переменных прогноза. Строка t соответствует наблюдаемым предикторам в период t (Zt). Расширенное уравнение наблюдения
Другими словами, программное обеспечение выкачивает наблюдения с помощью компонента регрессии. β является независимым от времени вектором коэффициентов регрессии, которые программное обеспечение оценивает со всеми другими параметрами.
Если существуют наблюдения n на период, то регрессы программного обеспечения весь ряд предиктора на каждое наблюдение.
Если вы задаете Predictors0
, то Mdl
должен быть независим от времени. В противном случае программное обеспечение возвращает ошибку.
Если вы задаете Predictors0
, то необходимо также задать Beta
и PredictorsF
.
Если Mdl
является предполагаемой моделью в пространстве состояний (то есть, возвращенный estimate
), то это - лучшая практика установить Predictors0
на тот же набор данных предиктора, что вы раньше соответствовали Mdl
.
По умолчанию программное обеспечение исключает компонент регрессии из модели в пространстве состояний.
Типы данных: double
Y
Предсказанные наблюденияПредсказанные наблюдения, возвращенные как матрица или вектор ячейки числовых векторов.
Если Mdl
является независимым от времени, моделью в пространстве состояний относительно наблюдений, то Y
является numPeriods
-by-n матрица.
Если Mdl
является изменяющимся во времени, моделью в пространстве состояний относительно наблюдений, то Y
является numPeriods
-by-1 вектор ячейки числовых векторов. Ячейка t Y
содержит nt-by-1 числовой вектор предсказанных наблюдений в течение периода t.
YMSE
— Ошибочные отклонения предсказанных наблюденийОшибочные отклонения предсказанных наблюдений, возвращенных как матрица или вектор ячейки числовых векторов.
Если Mdl
является независимым от времени, моделью в пространстве состояний относительно наблюдений, то YMSE
является numPeriods
-by-n матрица.
Если Mdl
является изменяющимся во времени, моделью в пространстве состояний относительно наблюдений, то YMSE
является numPeriods
-by-1 вектор ячейки числовых векторов. Ячейка t YMSE
содержит nt-by-1 числовой вектор ошибочных отклонений для соответствующих предсказанных наблюдений в течение периода t.
X
Прогнозы состоянияПрогнозы состояния, возвращенные как матрица или вектор ячейки числовых векторов.
Если Mdl
является независимым от времени, моделью в пространстве состояний относительно состояний, то X
является numPeriods
-by-m матрица.
Если Mdl
является изменяющимся во времени, моделью в пространстве состояний относительно состояний, то X
является numPeriods
-by-1 вектор ячейки числовых векторов. Ячейка t X
содержит mt-by-1 числовой вектор предсказанных наблюдений в течение периода t.
XMSE
— Ошибочные отклонения прогнозов состоянияОшибочные отклонения прогнозов состояния, возвращенных как матрица или вектор ячейки числовых векторов.
Если Mdl
является независимым от времени, моделью в пространстве состояний относительно состояний, то XMSE
является numPeriods
-by-m матрица.
Если Mdl
является изменяющимся во времени, моделью в пространстве состояний относительно состояний, то XMSE
является numPeriods
-by-1 вектор ячейки числовых векторов. Ячейка t XMSE
содержит mt-by-1 числовой вектор ошибочных отклонений для соответствующих предсказанных наблюдений в течение периода t.
Предположим, что скрытый процесс является случайным обходом. Впоследствии, уравнение состояния
где является Гауссовым со средним значением 0 и стандартным отклонением 1.
Сгенерируйте случайную последовательность 100 наблюдений от , предположение, что ряд запускается в 1,5.
T = 100;
x0 = 1.5;
rng(1); % For reproducibility
u = randn(T,1);
x = cumsum([x0;u]);
x = x(2:end);
Предположим далее, что скрытый процесс подвергается аддитивной погрешности измерения. Впоследствии, уравнение наблюдения
где является Гауссовым со средним значением 0 и стандартным отклонением 0.75. Вместе, скрытые уравнения процесса и наблюдения составляют модель в пространстве состояний.
Используйте случайный скрытый процесс состояния (x
) и уравнение наблюдения, чтобы сгенерировать наблюдения.
y = x + 0.75*randn(T,1);
Задайте четыре содействующих матрицы.
A = 1; B = 1; C = 1; D = 0.75;
Создайте рассеянную модель в пространстве состояний с помощью содействующих матриц. Укажите, что распределение начального состояния является рассеянным.
Mdl = dssm(A,B,C,D,'StateType',2)
Mdl = State-space model type: dssm State vector length: 1 Observation vector length: 1 State disturbance vector length: 1 Observation innovation vector length: 1 Sample size supported by model: Unlimited State variables: x1, x2,... State disturbances: u1, u2,... Observation series: y1, y2,... Observation innovations: e1, e2,... State equation: x1(t) = x1(t-1) + u1(t) Observation equation: y1(t) = x1(t) + (0.75)e1(t) Initial state distribution: Initial state means x1 0 Initial state covariance matrix x1 x1 Inf State types x1 Diffuse
Mdl
является моделью dssm
. Проверьте, что модель правильно задана с помощью отображения в Командном окне.
Предскажите наблюдения 10 периодов в будущее и оцените среднеквадратические ошибки прогнозов.
numPeriods = 10; [ForecastedY,YMSE] = forecast(Mdl,numPeriods,y);
Постройте прогнозы с ответами в выборке, и 95% интервалов прогноза вальдового типа.
ForecastIntervals(:,1) = ForecastedY - 1.96*sqrt(YMSE); ForecastIntervals(:,2) = ForecastedY + 1.96*sqrt(YMSE); figure plot(T-20:T,y(T-20:T),'-k',T+1:T+numPeriods,ForecastedY,'-.r',... T+1:T+numPeriods,ForecastIntervals,'-.b',... T:T+1,[y(end)*ones(3,1),[ForecastedY(1);ForecastIntervals(1,:)']],':k',... 'LineWidth',2) hold on title({'Observed Responses and Their Forecasts'}) xlabel('Period') ylabel('Responses') legend({'Observations','Forecasted observations','95% forecast intervals'},... 'Location','Best') hold off
Интервалы прогноза становятся шире, потому что процесс является неустановившимся.
Предположим, что линейное соотношение между уровнем безработицы и номинальным валовым национальным продуктом (nGNP) представляет интерес. Предположим далее, что уровень безработицы является серией AR (1). Символически, и в форме пространства состояний, модель
где:
уровень безработицы во время t.
наблюдаемое изменение в уровне безработицы, выкачиваемом возвратом nGNP ().
серия Gaussian воздействий состояния, имеющих среднее значение 0 и неизвестное стандартное отклонение .
Загрузите набор данных Нельсона-Плоссера, который содержит уровень безработицы и nGNP ряд, среди прочего.
load Data_NelsonPlosser
Предварительно обработайте данные путем взятия натурального логарифма nGNP ряда и удаления стартовых значений NaN
из каждого ряда.
isNaN = any(ismissing(DataTable),2); % Flag periods containing NaNs gnpn = DataTable.GNPN(~isNaN); y = diff(DataTable.UR(~isNaN)); T = size(gnpn,1); % The sample size Z = price2ret(gnpn);
Этот пример продолжает использовать ряд без значений NaN
. Однако с помощью среды Фильтра Калмана, программное обеспечение может разместить ряд, содержащий отсутствующие значения.
Определите, как хорошо модель предсказывает наблюдения путем удаления последних 10 наблюдений для сравнения.
numPeriods = 10; % Forecast horizon isY = y(1:end-numPeriods); % In-sample observations oosY = y(end-numPeriods+1:end); % Out-of-sample observations ISZ = Z(1:end-numPeriods); % In-sample predictors OOSZ = Z(end-numPeriods+1:end); % Out-of-sample predictors
Задайте содействующие матрицы.
A = NaN; B = NaN; C = 1;
Создайте модель в пространстве состояний с помощью dssm
путем предоставления содействующих матриц и указывания, что значения состояния прибывают из рассеянного распределения. Рассеянная спецификация указывает на полное незнание о моментах начального распределения.
StateType = 2;
Mdl = dssm(A,B,C,'StateType',StateType);
Оцените параметры. Задайте компонент регрессии и его начальное значение для оптимизации с помощью аргументов пары "имя-значение" 'Predictors'
и 'Beta0'
, соответственно. Отобразите оценки и всю информацию о диагностике оптимизации. Ограничьте оценку ко всем положительным, вещественным числам.
params0 = [0.3 0.2]; % Initial values chosen arbitrarily Beta0 = 0.1; [EstMdl,estParams] = estimate(Mdl,y,params0,'Predictors',Z,'Beta0',Beta0,... 'lb',[-Inf 0 -Inf]);
Method: Maximum likelihood (fmincon) Effective Sample size: 60 Logarithmic likelihood: -110.477 Akaike info criterion: 226.954 Bayesian info criterion: 233.287 | Coeff Std Err t Stat Prob -------------------------------------------------------- c(1) | 0.59436 0.09408 6.31738 0 c(2) | 1.52554 0.10758 14.17991 0 y <- z(1) | -24.26161 1.55730 -15.57930 0 | | Final State Std Dev t Stat Prob x(1) | 2.54764 0 Inf 0
EstMdl
является моделью dssm
, и можно получить доступ к ее свойствам с помощью записи через точку.
Предскажите наблюдения по горизонту прогноза. EstMdl
не хранит набор данных, таким образом, необходимо передать его в соответствующих аргументах пары "имя-значение".
[fY,yMSE] = forecast(EstMdl,numPeriods,isY,'Predictors0',ISZ,... 'PredictorsF',OOSZ,'Beta',estParams(end));
fY
является вектором 10 на 1, содержащим предсказанные наблюдения, и yMSE
является вектором 10 на 1, содержащим отклонения предсказанных наблюдений.
Получите 95% интервалов прогноза вальдового типа. Постройте предсказанные наблюдения с их истинными значениями и интервалами прогноза.
ForecastIntervals(:,1) = fY - 1.96*sqrt(yMSE); ForecastIntervals(:,2) = fY + 1.96*sqrt(yMSE); figure h = plot(dates(end-numPeriods-9:end-numPeriods),isY(end-9:end),'-k',... dates(end-numPeriods+1:end),oosY,'-k',... dates(end-numPeriods+1:end),fY,'--r',... dates(end-numPeriods+1:end),ForecastIntervals,':b',... dates(end-numPeriods:end-numPeriods+1),... [isY(end)*ones(4,1),[oosY(1);ForecastIntervals(1,:)';fY(1)]],':k',... 'LineWidth',2); xlabel('Period') ylabel('Change in unemployment rate') legend(h([1,3,4]),{'Observations','Forecasted responses',... '95% forecast intervals'}) title('Observed and Forecasted Changes in the Unemployment Rate')
Предположим, что скрытый процесс является случайным обходом. Впоследствии, уравнение состояния
где является Гауссовым со средним значением 0 и стандартным отклонением 1.
Сгенерируйте случайную последовательность 100 наблюдений от , предположение, что ряд запускается в 1,5.
T = 100;
x0 = 1.5;
rng(1); % For reproducibility
u = randn(T,1);
x = cumsum([x0;u]);
x = x(2:end);
Предположим далее, что скрытый процесс подвергается аддитивной погрешности измерения. Впоследствии, уравнение наблюдения
где является Гауссовым со средним значением 0 и стандартным отклонением 0.75. Вместе, скрытые уравнения процесса и наблюдения составляют модель в пространстве состояний.
Используйте случайный скрытый процесс состояния (x
) и уравнение наблюдения, чтобы сгенерировать наблюдения.
y = x + 0.75*randn(T,1);
Задайте четыре содействующих матрицы.
A = 1; B = 1; C = 1; D = 0.75;
Создайте рассеянную модель в пространстве состояний с помощью содействующих матриц. Укажите, что распределение начального состояния является рассеянным.
Mdl = dssm(A,B,C,D,'StateType',2)
Mdl = State-space model type: dssm State vector length: 1 Observation vector length: 1 State disturbance vector length: 1 Observation innovation vector length: 1 Sample size supported by model: Unlimited State variables: x1, x2,... State disturbances: u1, u2,... Observation series: y1, y2,... Observation innovations: e1, e2,... State equation: x1(t) = x1(t-1) + u1(t) Observation equation: y1(t) = x1(t) + (0.75)e1(t) Initial state distribution: Initial state means x1 0 Initial state covariance matrix x1 x1 Inf State types x1 Diffuse
Mdl
является моделью dssm
. Проверьте, что модель правильно задана с помощью отображения в Командном окне.
Предскажите состояния 10 периодов в будущее и оцените среднеквадратические ошибки прогнозов.
numPeriods = 10; [~,~,ForecastedX,XMSE] = forecast(Mdl,numPeriods,y);
Постройте прогнозы с состояниями в выборке, и 95% интервалов прогноза вальдового типа.
ForecastIntervals(:,1) = ForecastedX - 1.96*sqrt(XMSE); ForecastIntervals(:,2) = ForecastedX + 1.96*sqrt(XMSE); figure plot(T-20:T,x(T-20:T),'-k',T+1:T+numPeriods,ForecastedX,'-.r',... T+1:T+numPeriods,ForecastIntervals,'-.b',... T:T+1,[x(end)*ones(3,1),[ForecastedX(1);ForecastIntervals(1,:)']],':k',... 'LineWidth',2) hold on title({'State Values and Their Forecasts'}) xlabel('Period') ylabel('State value') legend({'State Values','Forecasted states','95% forecast intervals'},... 'Location','Best') hold off
Интервалы прогноза становятся шире, потому что процесс является неустановившимся.
Mdl
не хранит данные об ответе, данные о предикторе и коэффициенты регрессии. Предоставьте их каждый раз, когда необходимое использование соответствующего входа или аргументов пары "имя-значение".
Фильтр Калмана хранит недостающие данные, не обновляя отфильтрованное оценочное соответствие состояния недостающим наблюдениям. Другими словами, предположите, что существует недостающее наблюдение в период t. Затем прогноз состояния для периода t на основе предыдущего t – 1 наблюдение и отфильтрованное состояние в течение периода t эквивалентен.
[1] Дербин Дж. и С. Дж. Купмен. Анализ Временных рядов Методами Пространства состояний. 2-й редактор Оксфорд: Издательство Оксфордского университета, 2012.
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.