Оцените изменяющуюся во времени модель в пространстве состояний

Этот пример показывает, как создать и оценить модель в пространстве состояний, содержащую изменяющиеся во времени параметры.

Предположим, что AR (2) и модель MA (1) включает скрытый процесс. Существует 50 периодов и MA (1), процесс выпадает из модели в течение итоговых 25 периодов. Впоследствии, уравнение состояния в течение первых 25 периодов

В течение последних 25 периодов уравнение состояния

где и являются Гауссовыми со средним значением 0 и стандартным отклонением 1.

Сгенерируйте случайную последовательность 50 наблюдений от и, приняв, что ряд запускается в 1,5 и 1, соответственно.

T = 50;
ARMdl = arima('AR',{0.7,-0.2},'Constant',0,'Variance',1);
MAMdl = arima('MA',0.6,'Constant',0,'Variance',1);
x0 = [1.5 1; 1.5 1];
rng(1);
x = [simulate(ARMdl,T,'Y0',x0(:,1)),...
    [simulate(MAMdl,T/2,'Y0',x0(:,2));nan(T/2,1)]];

Последние 25 значений для моделируемого MA (1) данные отсутствуют.

Предположим далее, что скрытые процессы измеряются с помощью

в течение первых 25 периодов, и

в течение последних 25 периодов. является Гауссовым со средним значением 0 и стандартным отклонением 1.

Сгенерируйте наблюдения с помощью случайного скрытого процесса состояния (x) и уравнение наблюдения.

y = 2*nansum(x')'+randn(T,1);

Вместе, скрытые уравнения процесса и наблюдения составляют модель в пространстве состояний. Если коэффициенты являются неизвестными параметрами, модель в пространстве состояний

Запишите функцию, которая задает, как параметры в params сопоставляют с матрицами модели в пространстве состояний, значениями начального состояния и типом состояния.


% Copyright 2015 The MathWorks, Inc.

function [A,B,C,D,Mean0,Cov0,StateType] = AR2MAParamMap(params,T)
%AR2MAParamMap Time-variant state-space model parameter mapping function
%
% This function maps the vector params to the state-space matrices (A, B,
% C, and D), the initial state value and the initial state variance (Mean0
% and Cov0), and the type of state (StateType). From periods 1 to T/2, the
% state model is an AR(2) and an MA(1) model, and the observation model is
% the sum of the two states. From periods T/2 + 1 to T, the state model is
% just the AR(2) model.
    A1 = {[params(1) params(2) 0 0; 1 0 0 0; 0 0 0 params(3); 0 0 0 0]};
    B1 = {[1 0; 0 0; 0 1; 0 1]}; 
    C1 = {params(4)*[1 0 1 0]};
    Mean0 = ones(4,1);
    Cov0 = 10*eye(4);
    StateType = [0 0 0 0];
    A2 = {[params(1) params(2) 0 0; 1 0 0 0]};
    B2 = {[1; 0]};
    A3 = {[params(1) params(2); 1 0]};
    B3 = {[1; 0]}; 
    C3 = {params(5)*[1 0]};
    A = [repmat(A1,T/2,1);A2;repmat(A3,(T-2)/2,1)];
    B = [repmat(B1,T/2,1);B2;repmat(B3,(T-2)/2,1)];
    C = [repmat(C1,T/2,1);repmat(C3,T/2,1)];
    D = 1;
end

Сохраните этот код в файле с именем AR2MAParamMap и поместите его в свой путь MATLAB®.

Создайте модель в пространстве состояний путем передачи функционального AR2MAParamMap как указателя на функцию к ssm.

Mdl = ssm(@(params)AR2MAParamMap(params,T));

ssm неявно задает модель в пространстве состояний. Обычно, вы не можете проверить неявно заданные модели в пространстве состояний.

Передайте наблюдаемые ответы (y) estimate, чтобы оценить параметры. Задайте положительные начальные значения для неизвестных параметров.

params0 = 0.1*ones(5,1);
EstMdl = estimate(Mdl,y,params0)
Method: Maximum likelihood (fminunc)
Sample size: 50
Logarithmic  likelihood:     -114.957
Akaike   info criterion:      239.913
Bayesian info criterion:      249.473
      |     Coeff       Std Err   t Stat     Prob  
---------------------------------------------------
 c(1) |  0.47870       0.26634    1.79733  0.07229 
 c(2) |  0.00809       0.27179    0.02975  0.97626 
 c(3) |  0.55735       0.80958    0.68844  0.49118 
 c(4) |  1.62679       0.41622    3.90848  0.00009 
 c(5) |  1.90021       0.49563    3.83391  0.00013 
      |                                            
      |   Final State   Std Dev    t Stat    Prob  
 x(1) | -0.81229       0.46815   -1.73511  0.08272 
 x(2) | -0.31449       0.45918   -0.68490  0.49341 

EstMdl = 


State-space model type: <a href="matlab: doc ssm">ssm</a>

State vector length: Time-varying
Observation vector length: 1
State disturbance vector length: Time-varying
Observation innovation vector length: 1
Sample size supported by model: 50

State variables: x1, x2,...
State disturbances: u1, u2,...
Observation series: y1, y2,...
Observation innovations: e1, e2,...

State equations of period 1, 2, 3,..., 25:
x1(t) = (0.48)x1(t-1) + (8.09e-03)x2(t-1) + u1(t)
x2(t) = x1(t-1)
x3(t) = (0.56)x4(t-1) + u2(t)
x4(t) = u2(t)

State equations of period 26:
x1(t) = (0.48)x1(t-1) + (8.09e-03)x2(t-1) + u1(t)
x2(t) = x1(t-1)

State equations of period 27, 28, 29,..., 50:
x1(t) = (0.48)x1(t-1) + (8.09e-03)x2(t-1) + u1(t)
x2(t) = x1(t-1)


Observation equation of period 1, 2, 3,..., 25:
y1(t) = (1.63)x1(t) + (1.63)x3(t) + e1(t)

Observation equation of period 26, 27, 28,..., 50:
y1(t) = (1.90)x1(t) + e1(t)


Initial state distribution:

Initial state means
 x1  x2  x3  x4 
  1   1   1   1 

Initial state covariance matrix
     x1  x2  x3  x4 
 x1  10  0   0   0  
 x2  0   10  0   0  
 x3  0   0   10  0  
 x4  0   0   0   10 

State types
     x1          x2          x3          x4     
 Stationary  Stationary  Stationary  Stationary 

Предполагаемые параметры в 1 стандартной погрешности их истинных значений, но стандартные погрешности довольно высоки. Поверхности вероятности моделей в пространстве состояний могут содержать локальные максимумы. Поэтому это - хорошая практика, чтобы попробовать несколько начальных значений параметров или рассмотреть использование refine.

Смотрите также

| | | |

Связанные примеры

Больше о