Опция установлена для findstates
opt = findstatesOptions
opt = findstatesOptions(Name,Value)
создает набор опции по умолчанию для opt
= findstatesOptionsfindstates
. Используйте запись через точку, чтобы настроить набор опции в случае необходимости.
создает набор опции с опциями, заданными одним или несколькими аргументами пары opt
= findstatesOptions(Name,Value
)Name,Value
. Опции, которые вы не задаете, сохраняют свое значение по умолчанию.
Создайте набор опции для findstates
путем конфигурирования объекта спецификации для начальных состояний.
Идентифицируйте модель в пространстве состояний четвертого порядка от данных.
load iddata8 z8; sys = ssest(z8,4);
z8
является объектом iddata
, содержащим данные об отклике системы временного интервала. sys
является четвертым порядком модель idss
, которая идентифицирована от данных.
Сконфигурируйте объект спецификации для начальных состояний модели.
x0obj = idpar([1;nan(3,1)]); x0obj.Free(1) = false; x0obj.Minimum(2) = 0; x0obj.Maximum(2) = 1;
x0obj
задает ограничения оценки на начальные условия. Значение первого состояния задано как 1, когда x0obj
создается. x0obj.Free(1) = false
задает первое начальное состояние как фиксированный параметр оценки. Второе состояние неизвестно. Но, x0obj.Minimum(2) = 0
и x0obj.Maximum(2) = 1
задают нижние и верхние границы второго состояния как 0
и 1
, соответственно.
Создайте набор опции для findstates
, чтобы идентифицировать начальные состояния модели.
opt = findstatesOptions; opt.InitialState = x0obj;
Идентифицируйте начальные состояния модели.
x0_estimated = findstates(sys,z8,Inf,opt);
Создайте набор опции для findstates
где:
Начальные состояния оцениваются таким образом, что норма ошибки прогноза минимизирована. Начальные значения состояний, соответствующих ненулевым задержкам, также оцениваются.
Адаптивный поиск Ньютона Гаусса подпространства используется для оценки.
opt = findstatesOptions('InitialState','d','SearchMethod','gna');
Укажите необязательные аргументы в виде пар ""имя, значение"", разделенных запятыми.
Имя (Name) — это имя аргумента, а значение (Value) — соответствующее значение.
Name
должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.
findstatesOptions('InitialState','d')
'InitialState'
— Оценка начальных состояний'e'
(значение по умолчанию) | 'd'
| вектор или матрица | объект idpar
x0Obj
Оценка начальных состояний, заданных как пара, разделенная запятой, состоящая из 'InitialState'
и одно из следующего:
E
Начальные состояния оцениваются таким образом, что норма ошибки прогноза минимизирована.
Для нелинейных моделей серого поля только те начальные состояния оценивается i
, которые определяются как свободные в модели (sys.InitialStates(i).Fixed = false
). Чтобы оценить все состояния модели, сначала задайте все состояния Nx
модели idnlgrey
sys
как свободные.
for i = 1:Nx sys.InitialStates(i).Fixed = false; end
Точно так же, чтобы зафиксировать все начальные состояния к значениям, заданным в sys.InitialStates
, сначала задайте все состояния, как зафиксировано в свойстве sys.InitialStates
нелинейной модели серого поля.
D
Подобно 'e'
, но поглощает ненулевые задержки в коэффициенты модели. Задержки сначала преобразованы в явные образцовые состояния, и начальные значения тех состояний также оценены и возвращены.
Используйте эту опцию в течение дискретного времени линейные модели только.
Vector or Matrix
— Исходное предположение для значений состояния, при использовании нелинейных моделей. Задайте вектор-столбец длины, равной количеству состояний. Для данных мультиэксперимента используйте матрицу со столбцами Ne
, где Ne
является количеством экспериментов.
Используйте эту опцию для нелинейных моделей только.
Объект x0obj
— Specification, созданный с помощью idpar
. Используйте x0obj
, чтобы наложить ограничения на начальные состояния путем фиксации их значения или определения минимальных или максимальных границ.
Используйте x0obj
только для нелинейных моделей серого поля и линейных моделей в пространстве состояний (idss
или idgrey
). Эта опция применима только для горизонта прогноза, равного 1
или Inf
. Дополнительную информацию см. в findstates
о горизонте прогноза.
'InputOffset'
— Удаление смещения от входных данных временного интервала во время оценки[]
(значение по умолчанию) | вектор положительных целых чисел | матрицаУдаление смещения от входных данных временного интервала во время оценки, заданной как пара, разделенная запятой, состоящая из 'InputOffset'
и одно из следующего:
Вектор-столбец положительных целых чисел длины Nu, где Nu является количеством входных параметров.
[]
— Не указывает ни на какое смещение.
Nu-by-Ne матрица — Для данных мультиэксперимента, задайте InputOffset
как Nu-by-Ne матрица. Nu является количеством входных параметров, и Ne является количеством экспериментов.
Каждая запись, заданная InputOffset
, вычтена из соответствующих входных данных.
'OutputOffset'
— Удаление смещения от выходных данных временного интервала во время оценки[]
(значение по умолчанию) | вектор | матрицаУдаление смещения от выходных данных временного интервала во время оценки, заданной как пара, разделенная запятой, состоящая из 'OutputOffset'
и одно из следующего:
Вектор-столбец длины Ny, где Ny является количеством выходных параметров.
[]
— Не указывает ни на какое смещение.
Ny-by-Ne матрица — Для данных мультиэксперимента, задайте OutputOffset
как Ny-by-Ne матрица. Ny является количеством выходных параметров, и Ne является количеством экспериментов.
Каждая запись, заданная OutputOffset
, вычтена из соответствующих выходных данных.
'OutputWeight'
— Взвешивание ошибок прогноза при использовании мультивыходных данных[]
(значение по умолчанию) | 'noise'
| матрицаВзвешивание ошибок прогноза при использовании мультивыходных данных, заданных как пара, разделенная запятой, состоящая из 'OutputWeight'
и одно из следующего:
[]
— Никакое взвешивание не используется. Определение как []
совпадает с eye(Ny)
, где Ny является количеством выходных параметров.
'noise'
— Инверсия шумового отклонения, сохраненного моделью, используется для взвешивания во время оценки начальных состояний.
Положительная полуопределенная матрица, W
, размера Ny-by-Ny — Это взвешивание минимизирует trace(E'*E*W)
для оценки начальных состояний, где E
является матрицей ошибок прогноза.
'SearchMethod'
— Числовой метод поиска используется для итеративной оценки параметра'auto'
(значение по умолчанию) | 'gn'
| 'gna'
| 'lm'
| 'grad'
| 'lsqnonlin'
| 'fmincon'
Числовой метод поиска используется для итеративной оценки параметра, заданной как пара, разделенная запятой, состоящая из 'SearchMethod'
и одно из следующего:
'auto'
Комбинацию алгоритмов поиска строки, 'gn'
, 'lm'
, 'gna'
и методов 'grad'
пробуют в последовательности в каждой итерации. Первое продвижение направления спуска к сокращению стоимости оценки используется.
'gn'
— Поиск наименьших квадратов Ньютона Гаусса подпространства. Сингулярные значения якобиевской матрицы меньше, чем GnPinvConstant*eps*max(size(J))*norm(J)
отбрасываются при вычислении поискового направления. J является якобиевской матрицей. Матрица Гессиана аппроксимирована как JTJ. Если нет никакого улучшения этого направления, функция пробует направление градиента.
'gna'
— Адаптивный поиск Ньютона Гаусса подпространства. Меньше собственных значений, чем gamma*max(sv)
Гессиана проигнорированы, где sv содержит сингулярные значения Гессиана. Направление Ньютона Гаусса вычисляется в остающемся подпространстве. gamma имеет начальное значение InitialGnaTolerance
(см. Advanced
в 'SearchOptions'
для получения дополнительной информации). Это значение увеличено факторным LMStep
каждый раз, когда поиску не удается найти нижнее значение критерия меньше чем в пяти делениях пополам. Это значение уменьшено факторным 2*LMStep
каждый раз, когда поиск успешен без любых делений пополам.
'lm'
— Поиск наименьших квадратов Levenberg-Marquardt, где следующим значением параметров является -pinv(H+d*I)*grad
от предыдущего. H является Гессиан, I является единичной матрицей, и grad является градиентом. d является числом, которое увеличено, пока нижнее значение критерия не найдено.
'grad'
— Поиск наименьших квадратов быстрейшего спуска.
'lsqnonlin'
— Доверительная область отражающий алгоритм lsqnonlin
. Программное обеспечение Requires Optimization Toolbox™.
'fmincon'
— Ограниченные нелинейные решатели. Можно использовать последовательное квадратичное программирование (SQP) и доверять области отражающие алгоритмы решателя fmincon
. Если у вас есть программное обеспечение Optimization Toolbox, можно также использовать внутреннюю точку и алгоритмы активного набора решателя fmincon
. Задайте алгоритм в опции SearchOptions.Algorithm
. Алгоритмы fmincon
могут привести к улучшенным результатам оценки в следующих сценариях:
Ограниченные проблемы минимизации, когда существуют границы, наложенные на параметры модели.
Образцовые структуры, где функция потерь является нелинейным или не сглаженной функцией параметров.
Мультивыведите образцовую оценку. Определяющая функция потерь минимизирована по умолчанию для мультивыходной оценки модели. алгоритмы fmincon
могут минимизировать такие функции потерь непосредственно. Другие методы поиска, такие как 'lm'
и 'gn'
минимизируют определяющую функцию потерь путем альтернативной оценки шумового отклонения и сокращения значения потерь для данного шумового значения отклонения. Следовательно, алгоритмы fmincon
могут предложить лучшую эффективность и точность для мультивыходных оценок модели.
'SearchOptions '
— Опция установлена для алгоритма поискаНабор опции для алгоритма поиска, заданного как пара, разделенная запятой, состоящая из 'SearchOptions '
и набора параметра поиска с полями, которые зависят от значения SearchMethod
.
Структура SearchOptions
, Когда SearchMethod
Задан как 'gn'
, 'gna'
, 'lm'
, 'grad'
или 'auto'
Имя поля | Описание | Значение по умолчанию | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tolerance | Минимальная процентная разница между текущим значением функции потерь и ее ожидаемым улучшением после следующей итерации, заданной как положительная скалярная величина. Когда процент ожидаемого улучшения является меньше, чем | 0.01 | ||||||||||||||||||||||||||||||
MaxIterations | Максимальное количество итераций во время минимизации функции потерь, заданной как положительное целое число. Итерации останавливаются, когда Установка Используйте | 20 | ||||||||||||||||||||||||||||||
Advanced | Настройки расширенного поиска, заданные как структура со следующими полями:
|
Структура SearchOptions
, Когда SearchMethod
Задан как 'lsqnonlin'
Имя поля | Описание | Значение по умолчанию |
---|---|---|
FunctionTolerance | Допуск завершения на функции потерь, которую программное обеспечение минимизирует, чтобы определить предполагаемые значения параметров, заданные как положительная скалярная величина. Значение | 1e-5 |
StepTolerance | Допуск завершения на предполагаемых значениях параметров, заданных как положительная скалярная величина. Значение | 1e-6 |
MaxIterations | Максимальное количество итераций во время минимизации функции потерь, заданной как положительное целое число. Итерации останавливаются, когда Значение | 20 |
Advanced | Настройки расширенного поиска, заданные как опция, установлены для Для получения дополнительной информации см. таблицу Optimization Options в Опциях Оптимизации (Optimization Toolbox). | Используйте optimset('lsqnonlin') , чтобы создать набор опции по умолчанию. |
Структура SearchOptions
, Когда SearchMethod
Задан как 'fmincon'
Имя поля | Описание | Значение по умолчанию |
---|---|---|
Algorithm | Алгоритм оптимизации
Для получения дополнительной информации об алгоритмах, см. Ограниченные Нелинейные Алгоритмы Оптимизации (Optimization Toolbox) и Выбор Algorithm (Optimization Toolbox). | 'sqp' |
FunctionTolerance | Допуск завершения на функции потерь, которую программное обеспечение минимизирует, чтобы определить предполагаемые значения параметров, заданные как положительная скалярная величина. | 1e-6 |
StepTolerance | Допуск завершения на предполагаемых значениях параметров, заданных как положительная скалярная величина. | 1e-6 |
MaxIterations | Максимальное количество итераций во время минимизации функции потерь, заданной как положительное целое число. Итерации останавливаются, когда | 100 |
Чтобы задать значения полей в SearchOptions
, создайте набор findstatesOptions
по умолчанию и измените поля с помощью записи через точку. Любые поля, которые вы не изменяете, сохраняют свои значения по умолчанию.
opt = findstatesOptions; opt.SearchOptions.Tolerance = 0.02; opt.SearchOptions.Advanced.MaxBisections = 30;
opt
— Опция установлена для findstates
findstatesOptions
установленаНабор опции для findstates
, возвращенного как опция findstatesOptions
, установлен.
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.