linprog

Решите линейные проблемы программирования

Линейный решатель программирования

Находит минимум проблемы заданным

minxfTx таким образом , что {Axb,Aeqx=beq,lbxub.

f, x, b, beq, lb и ub являются векторами, и A и Aeq являются матрицами.

Примечание

linprog применяется только к основанному на решателе подходу. Для обсуждения двух подходов оптимизации смотрите, Сначала Выбирают Problem-Based or Solver-Based Approach.

Синтаксис

x = linprog(f,A,b)
x = linprog(f,A,b,Aeq,beq)
x = linprog(f,A,b,Aeq,beq,lb,ub)
x = linprog(f,A,b,Aeq,beq,lb,ub,options)
x = linprog(problem)
[x,fval] = linprog(___)
[x,fval,exitflag,output] = linprog(___)
[x,fval,exitflag,output,lambda] = linprog(___)

Описание

пример

x = linprog(f,A,b) решает min f'*x, таким образом что  A*x  b.

пример

x = linprog(f,A,b,Aeq,beq) включает ограничения равенства   Aeq*x = beq. Установите   A = [] и   b = [], если никакие неравенства не существуют.

пример

x = linprog(f,A,b,Aeq,beq,lb,ub) задает набор нижних и верхних границ на переменных проекта, x, так, чтобы решением всегда был в области значений     lb ≤ x ≤ ub. Установите   Aeq = [] и   beq = [], если никакие равенства не существуют.

Примечание

Если заданные входные границы для проблемы противоречивы, выводом fval является [].

пример

x = linprog(f,A,b,Aeq,beq,lb,ub,options) минимизирует с опциями оптимизации, заданными options. Используйте optimoptions, чтобы установить эти опции.

пример

x = linprog(problem) находит минимум для problem, где problem является структурой, описанной во Входных параметрах.

Создайте структуру problem путем экспорта проблемы из приложения Оптимизации, как описано в Экспорте работы. Можно импортировать структуру problem из файла MPS с помощью mpsread. Можно также создать структуру problem из объекта OptimizationProblem при помощи prob2struct.

пример

[x,fval] = linprog(___), для любых входных параметров, возвращает значение целевой функции fun в решении x:   fval = f'*x.

пример

[x,fval,exitflag,output] = linprog(___) дополнительно возвращает значение exitflag, который описывает выходное условие и структуру output, который содержит информацию о процессе оптимизации.

пример

[x,fval,exitflag,output,lambda] = linprog(___) дополнительно возвращает структуру lambda, поля которого содержат множители Лагранжа в решении x.

Примеры

свернуть все

Решите простую линейную программу, заданную линейными неравенствами.

В данном примере используйте эти линейные ограничения неравенства:

x(1)+x(2)2

x(1)+x(2)/41

x(1)-x(2)2

-x(1)/4-x(2)1

-x(1)-x(2)-1

-x(1)+x(2)2.

A = [1 1
    1 1/4
    1 -1
    -1/4 -1
    -1 -1
    -1 1];

b = [2 1 2 1 -1 2];

Используйте целевую функцию -x(1)-x(2)/3.

f = [-1 -1/3];

Решите линейную программу.

x = linprog(f,A,b)
Optimal solution found.
x = 2×1

    0.6667
    1.3333

Решите простую линейную программу, заданную линейными неравенствами и линейными равенствами.

В данном примере используйте эти линейные ограничения неравенства:

x(1)+x(2)2

x(1)+x(2)/41

x(1)-x(2)2

-x(1)/4-x(2)1

-x(1)-x(2)-1

-x(1)+x(2)2.

A = [1 1
    1 1/4
    1 -1
    -1/4 -1
    -1 -1
    -1 1];

b = [2 1 2 1 -1 2];

Используйте линейное ограничение равенства x(1)+x(2)/4=1/2.

Aeq = [1 1/4];
beq = 1/2;

Используйте целевую функцию -x(1)-x(2)/3.

f = [-1 -1/3];

Решите линейную программу.

x = linprog(f,A,b,Aeq,beq)
Optimal solution found.
x = 2×1

     0
     2

Решите простую линейную программу с линейными неравенствами, линейными равенствами и границами.

В данном примере используйте эти линейные ограничения неравенства:

x(1)+x(2)2

x(1)+x(2)/41

x(1)-x(2)2

-x(1)/4-x(2)1

-x(1)-x(2)-1

-x(1)+x(2)2.

A = [1 1
    1 1/4
    1 -1
    -1/4 -1
    -1 -1
    -1 1];

b = [2 1 2 1 -1 2];

Используйте линейное ограничение равенства x(1)+x(2)/4=1/2.

Aeq = [1 1/4];
beq = 1/2;

Установите эти границы:

-1x(1)1.5

-0.5x(2)1.25.

lb = [-1,-0.5];
ub = [1.5,1.25];

Используйте целевую функцию -x(1)-x(2)/3.

f = [-1 -1/3];

Решите линейную программу.

x = linprog(f,A,b,Aeq,beq,lb,ub)
Optimal solution found.
x = 2×1

    0.1875
    1.2500

Решите линейную программу с помощью алгоритма 'interior-point'.

В данном примере используйте эти линейные ограничения неравенства:

x(1)+x(2)2

x(1)+x(2)/41

x(1)-x(2)2

-x(1)/4-x(2)1

-x(1)-x(2)-1

-x(1)+x(2)2.

A = [1 1
    1 1/4
    1 -1
    -1/4 -1
    -1 -1
    -1 1];

b = [2 1 2 1 -1 2];

Используйте линейное ограничение равенства x(1)+x(2)/4=1/2.

Aeq = [1 1/4];
beq = 1/2;

Установите эти границы:

-1x(1)1.5

-0.5x(2)1.25.

lb = [-1,-0.5];
ub = [1.5,1.25];

Используйте целевую функцию -x(1)-x(2)/3.

f = [-1 -1/3];

Установите опции использовать алгоритм 'interior-point'.

options = optimoptions('linprog','Algorithm','interior-point');

Решите линейную программу с помощью алгоритма 'interior-point'.

x = linprog(f,A,b,Aeq,beq,lb,ub,options)
Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the selected value of the function tolerance,
and constraints are satisfied to within the selected value of the constraint
tolerance.
x = 2×1

    0.1875
    1.2500

Этот пример показывает, как настроить проблему с помощью основанного на проблеме подхода и затем решить его с помощью основанного на решателе подхода. Проблема

max x(x+y/3)subjectto{x+y2x+y/41x-y2x/4+y-1x+y1-x+y2x+y/4=1/2-1x1.5-1/2y1.25

Создайте объект OptimizationProblem под названием prob, чтобы представлять эту проблему.

x = optimvar('x','LowerBound',-1,'UpperBound',1.5);
y = optimvar('y','LowerBound',-1/2,'UpperBound',1.25);
prob = optimproblem('Objective',x + y/3,'ObjectiveSense','max');
prob.Constraints.c1 = x + y <= 2;
prob.Constraints.c2 = x + y/4 <= 1;
prob.Constraints.c3 = x - y <= 2;
prob.Constraints.c4 = x/4 + y >= -1;
prob.Constraints.c5 = x + y >= 1;
prob.Constraints.c6 = -x + y <= 2;
prob.Constraints.c7 = x + y/4 == 1/2;

Преобразуйте проблемный объект в структуру задачи.

problem = prob2struct(prob);

Решите получившуюся структуру задачи.

[sol,fval,exitflag,output] = linprog(problem)
Optimal solution found.
sol = 2×1

    0.1875
    1.2500

fval = -0.6042
exitflag = 1
output = struct with fields:
         iterations: 0
    constrviolation: 0
            message: 'Optimal solution found.'
          algorithm: 'dual-simplex'
      firstorderopt: 0

Возвращенный fval отрицателен, даже при том, что компоненты решения положительны. Внутренне, prob2struct превращает проблему максимизации в проблему минимизации отрицания целевой функции. Смотрите Максимизацию Цели.

Которому компонент sol соответствует который переменная оптимизации? Исследуйте свойство Variables prob.

prob.Variables
ans = struct with fields:
    x: [1x1 optim.problemdef.OptimizationVariable]
    y: [1x1 optim.problemdef.OptimizationVariable]

Как вы можете ожидать, sol(1) соответствует x, и sol(2) соответствует y. См. Алгоритмы.

Вычислите значение функции решения и целевой функции для простой линейной программы.

Ограничения неравенства

x(1)+x(2)2

x(1)+x(2)/41

x(1)-x(2)2

-x(1)/4-x(2)1

-x(1)-x(2)-1

-x(1)+x(2)2.

A = [1 1
    1 1/4
    1 -1
    -1/4 -1
    -1 -1
    -1 1];

b = [2 1 2 1 -1 2];

Целевая функция -x(1)-x(2)/3.

f = [-1 -1/3];

Решите проблему и возвратите значение целевой функции.

[x,fval] = linprog(f,A,b)
Optimal solution found.
x = 2×1

    0.6667
    1.3333

fval = -1.1111

Получите выходной флаг и выведите структуру, чтобы лучше понять процесс решения и качество.

В данном примере используйте эти линейные ограничения неравенства:

x(1)+x(2)2

x(1)+x(2)/41

x(1)-x(2)2

-x(1)/4-x(2)1

-x(1)-x(2)-1

-x(1)+x(2)2.

A = [1 1
    1 1/4
    1 -1
    -1/4 -1
    -1 -1
    -1 1];

b = [2 1 2 1 -1 2];

Используйте линейное ограничение равенства x(1)+x(2)/4=1/2.

Aeq = [1 1/4];
beq = 1/2;

Установите эти границы:

-1x(1)1.5

-0.5x(2)1.25.

lb = [-1,-0.5];
ub = [1.5,1.25];

Используйте целевую функцию -x(1)-x(2)/3.

f = [-1 -1/3];

Установите опции использовать алгоритм 'dual-simplex'.

options = optimoptions('linprog','Algorithm','dual-simplex');

Решите линейную программу и запросите значение функции, выходной флаг, и выведите структуру.

[x,fval,exitflag,output] = linprog(f,A,b,Aeq,beq,lb,ub,options)
Optimal solution found.
x = 2×1

    0.1875
    1.2500

fval = -0.6042
exitflag = 1
output = struct with fields:
         iterations: 0
    constrviolation: 0
            message: 'Optimal solution found.'
          algorithm: 'dual-simplex'
      firstorderopt: 0

  • fval, значение целевой функции, больше, чем Возвращают Значение Целевой функции, потому что существует больше ограничений.

  • exitflag = 1 указывает, что решение надежно.

  • output.iterations = 0 указывает, что linprog нашел, что решение во время предварительно решает и не должно было выполнять итерации вообще.

Решите простую линейную программу и исследуйте решение и множители Лагранжа.

Используйте целевую функцию

f(x)=-5x1-4x2-6x3.

f = [-5; -4; -6];

Используйте линейные ограничения неравенства

x1-x2+x320

3x1+2x2+4x342

3x1+2x230.

A =  [1 -1  1
      3  2  4
      3  2  0];
b = [20;42;30];

Ограничьте все переменные быть положительными:

x10

x20

x30.

lb = zeros(3,1);

Установите Aeq и beq к [], указав, что нет никаких линейных ограничений равенства.

Aeq = [];
beq = [];

Вызовите linprog, получив множители Лагранжа.

[x,fval,exitflag,output,lambda] = linprog(f,A,b,Aeq,beq,lb);
Optimal solution found.

Исследуйте решение и множители Лагранжа.

x,lambda.ineqlin,lambda.lower
x = 3×1

         0
   15.0000
    3.0000

ans = 3×1

         0
    1.5000
    0.5000

ans = 3×1

    1.0000
         0
         0

lambda.ineqlin является ненулевым для вторых и третьих компонентов x. Это указывает, что вторые и третьи линейные ограничения неравенства удовлетворены равенствами:

3x1+2x2+4x3=42

3x1+2x2=30.

Проверяйте, что это верно:

A*x
ans = 3×1

  -12.0000
   42.0000
   30.0000

lambda.lower является ненулевым для первого компонента x. Это указывает, что x(1) в его нижней границе 0.

Входные параметры

свернуть все

Вектор коэффициентов, заданный как вектор действительных чисел или действительный массив. Вектор коэффициентов представляет целевую функцию f'*x. Обозначение принимает, что f является вектор-столбцом, но вы свободны использовать вектор - строку или массив. Внутренне, linprog преобразовывает f в вектор-столбец f(:).

Пример: f = [1,3,5,-6]

Типы данных: double

Линейные ограничения неравенства, заданные как действительная матрица. A является M-by-N матрица, где M является количеством неравенств, и N является количеством переменных (длина f). Для больших проблем передайте A как разреженную матрицу.

A кодирует M линейные неравенства

A*x <= b,

где x является вектор-столбцом переменных N x(:), и b является вектор-столбцом с элементами M.

Например, чтобы задать

x 1 + 2x2 ≤ 10
3x1 + 4x2 ≤ 20
5x1 + 6x2 ≤ 30,

дайте эти ограничения:

A = [1,2;3,4;5,6];
b = [10;20;30];

Пример: Чтобы указать, что x-компоненты составляют в целом 1 или меньше, возьмите A = ones(1,N) и b = 1

Типы данных: double

Линейные ограничения равенства, заданные как действительная матрица. Aeq является Me-by-N матрица, где Me является количеством равенств, и N является количеством переменных (длина f). Для больших проблем передайте Aeq как разреженную матрицу.

Aeq кодирует Me линейные равенства

Aeq*x = beq,

где x является вектор-столбцом переменных N x(:), и beq является вектор-столбцом с элементами Me.

Например, чтобы задать

x 1 + 2x2 + 3x3 = 10
2x1 + 4x2 + x 3 = 20,

дайте эти ограничения:

Aeq = [1,2,3;2,4,1];
beq = [10;20];

Пример: Чтобы указать что сумма x-компонентов к 1, возьмите Aeq = ones(1,N) и beq = 1

Типы данных: double

Линейные ограничения неравенства, заданные как вектор действительных чисел. b является M - вектор элемента, связанный с матрицей A. Если вы передаете b как вектор - строку, решатели внутренне преобразовывают b в вектор-столбец b(:). Для больших проблем передайте b как разреженный вектор.

b кодирует M линейные неравенства

A*x <= b,

где x является вектор-столбцом переменных N x(:), и A является матрицей размера M-by-N.

Например, чтобы задать

x 1 + 2x2 ≤ 10
3x1 + 4x2 ≤ 20
5x1 + 6x2 ≤ 30,

введите эти ограничения:

A = [1,2;3,4;5,6];
b = [10;20;30];

Пример: Чтобы указать что x сумма компонентов к 1 или меньше, используйте A = ones(1,N) и b = 1.

Типы данных: double

Линейные ограничения равенства, заданные как вектор действительных чисел. beq является Me - вектор элемента, связанный с матрицей Aeq. Если вы передаете beq как вектор - строку, решатели внутренне преобразовывают beq в вектор-столбец beq(:). Для больших проблем передайте beq как разреженный вектор.

beq кодирует Me линейные равенства

Aeq*x = beq,

где x является вектор-столбцом переменных N x(:), и Aeq является матрицей размера Me-by-N.

Например, чтобы задать

x 1 + 2x2 + 3x3 = 10
2x1 + 4x2 + x 3 = 20,

введите эти ограничения:

Aeq = [1,2,3;2,4,1];
beq = [10;20];

Пример: Чтобы указать что x сумма компонентов к 1, используйте Aeq = ones(1,N) и beq = 1.

Типы данных: double

Нижние границы, заданные как вектор действительных чисел или действительный массив. Если длина f равна тому из lb, то lb задает это

x(i) >= lb(i) для всего i.

Если numel(lb) < numel(f), то lb задает это

x(i) >= lb(i) для 1 <= i <= numel(lb).

В этом случае решатели выдают предупреждение.

Пример: указывать, что все x-компоненты положительны, lb = zeros(size(f))

Типы данных: double

Верхние границы, заданные как вектор действительных чисел или действительный массив. Если длина f равна тому из ub, то ub задает это

x(i) <= ub(i) для всего i.

Если numel(ub) < numel(f), то ub задает это

x(i) <= ub(i) для 1 <= i <= numel(ub).

В этом случае решатели выдают предупреждение.

Пример: указывать, что все x-компоненты - меньше чем один, ub = ones(size(f))

Типы данных: double

Опции оптимизации, заданные как вывод optimoptions или структуры как optimset, возвращаются.

Некоторые опции применяются ко всем алгоритмам, и другие важны для конкретных алгоритмов. Дополнительную информацию см. в Ссылке Опций Оптимизации.

Некоторые опции отсутствуют в отображении optimoptions. Эти опции появляются курсивом в следующей таблице. Для получения дополнительной информации, Опции вида на море.

Все алгоритмы
Algorithm

Выберите алгоритм оптимизации:

  • 'dual-simplex' (значение по умолчанию)

  • 'interior-point-legacy'

  • 'interior-point'

Для получения информации о выборе алгоритма см. Линейные Алгоритмы Программирования.

Диагностика

Отобразите диагностическую информацию о функции, которая будет минимизирована или решена. Выберите 'off' (значение по умолчанию) или 'on'.

Display

Уровень отображения (см. Итеративное Отображение):

  • 'final' (значение по умолчанию) отображает только окончательный вывод.

  • 'off' или 'none' не отображают вывода.

  • 'iter' отображает вывод в каждой итерации.

MaxIterations

Максимальное количество позволенных итераций, положительное целое число. Значение по умолчанию:

  • 85 для алгоритма 'interior-point-legacy'

  • 200 для алгоритма 'interior-point'

  • 10*(numberOfEqualities + numberOfInequalities + numberOfVariables) для алгоритма 'dual-simplex'

Смотрите допуски и критерий остановки и итерации и функциональные количества.

Для optimset именем является MaxIter. См. Текущие и Устаревшие Таблицы Имени Опции.

OptimalityTolerance

Допуск завершения на двойной выполнимости, положительной скалярной величине. Значение по умолчанию:

  • 1e-8 для алгоритма 'interior-point-legacy'

  • 1e-7 для алгоритма 'dual-simplex'

  • 1e-6 для алгоритма 'interior-point'

Для optimset именем является TolFun. См. Текущие и Устаревшие Таблицы Имени Опции.

Алгоритм внутренней точки
ConstraintTolerance

Допуск выполнимости к ограничениям, скаляру от 1e-10 до 1e-3. ConstraintTolerance измеряет основной допуск выполнимости. Значением по умолчанию является 1e-6.

Для optimset именем является TolCon. См. Текущие и Устаревшие Таблицы Имени Опции.

Предварительно обработать

Уровень предварительной обработки LP до итераций алгоритма. Задайте 'basic' (значение по умолчанию) или 'none'.

Двойной симплексный алгоритм
ConstraintTolerance

Допуск выполнимости к ограничениям, скаляру от 1e-10 до 1e-3. ConstraintTolerance измеряет основной допуск выполнимости. Значением по умолчанию является 1e-4.

Для optimset именем является TolCon. См. Текущие и Устаревшие Таблицы Имени Опции.

MaxTime

Максимальное количество времени в секундах, которые запускает алгоритм. Значением по умолчанию является Inf.

Предварительно обработать

Уровень предварительной обработки LP до двойных симплексных итераций алгоритма. Задайте 'basic' (значение по умолчанию) или 'none'.

Пример: options = optimoptions('linprog','Algorithm','interior-point','Display','iter')

Структура задачи, заданная как структура со следующими полями.

Имя поляЗапись

f

Линейный вектор целевой функции f

Aineq

Матрица для линейных ограничений неравенства

bineq

Вектор для линейных ограничений неравенства

Aeq

Матрица для линейных ограничений равенства

beq

Вектор для линейных ограничений равенства
lbВектор нижних границ
ubВектор верхних границ

solver

'linprog'

options

Опции создаются с optimoptions

Необходимо предоставить, по крайней мере, поле solver в структуре problem.

Самым простым способом получить структуру problem является экспорт задачи из Optimization app.

Типы данных: struct

Выходные аргументы

свернуть все

Решение, возвращенное как вектор действительных чисел или действительный массив. Размер x совпадает с размером f.

Значение целевой функции в решении, возвращенном как вещественное число. Обычно fval = f'*x.

Обоснуйте, что остановленный linprog, возвратился как целое число.

3

Решение выполнимо относительно относительного допуска ConstraintTolerance, но не выполнимо относительно абсолютного допуска.

1

Функция сходилась к решению x.

0

Количество итераций превысило options.MaxIterations, или время решения в секундах превысило options.MaxTime.

-2

Никакая допустимая точка не была найдена.

-3

Проблема неограниченна.

-4

Со значением NaN столкнулись во время осуществления алгоритма.

-5

И основные и двойные проблемы неосуществимы.

-7

Поисковое направление стало слишком маленьким. Никакие дальнейшие успехи не могли быть сделаны.

-9

Решатель потерял выполнимость.

3 Exitflags и -9 относятся к решениям, которые имеют большой infeasibilities. Они обычно являются результатом линейных ограничительных матриц, которые имеют большой номер условия или проблемы, которые имеют большие компоненты решения. Чтобы исправить эти проблемы, попытайтесь масштабировать содействующие матрицы, устранить избыточные линейные ограничения или дать более трудные границы на переменных.

Информация о процессе оптимизации, возвращенном как структура с этими полями.

iterations

Количество итераций

algorithm

Алгоритм оптимизации используется

cgiterations

0 (алгоритм внутренней точки только, включенный для обратной совместимости)

message

Выходное сообщение

constrviolation

Максимум ограничительных функций

firstorderopt

Мера по оптимальности первого порядка

Множители Лагранжа в решении, возвращенном как структура с этими полями.

lower

Нижние границы, соответствующие lb

upper

Верхние границы, соответствующие ub

ineqlin

Линейные неравенства, соответствующие A и b

eqlin

Линейные равенства, соответствующие Aeq и beq

Алгоритмы

свернуть все

Двойной симплексный алгоритм

Устаревший внутренней точкой алгоритм

Метод 'interior-point-legacy' основан на LIPSOL (Линейный Решатель Внутренней точки, [3]), который является вариантом алгоритма корректора предиктора Мехротры [2], основной двойной метод внутренней точки. Много шагов предварительной обработки происходят, прежде чем алгоритм начинает выполнять итерации. Смотрите Устаревшее внутренней точкой Линейное Программирование.

Первая стадия алгоритма может включить некоторую предварительную обработку ограничений (см. Устаревшее внутренней точкой Линейное Программирование). Несколько условий могут заставить linprog выходить с сообщением infeasibility. В каждом случае linprog возвращает отрицательный exitflag, указывая, чтобы указать на отказ.

  • Если строка всех нулей обнаруживается в Aeq, но соответствующий элемент beq не является нулем, то выходное сообщение

    Exiting due to infeasibility: An all-zero row in the
    constraint matrix does not have a zero in corresponding
    right-hand-side entry.
  • Если один из элементов x, как находят, не ограничен ниже, то выходное сообщение

    Exiting due to infeasibility: Objective f'*x is unbounded below.
  • Если одна из строк Aeq имеет только один ненулевой элемент, то присваиваемое значение в x называется одноэлементной переменной. В этом случае значение того компонента x может быть вычислено из Aeq и beq. Если вычисленное значение нарушает другое ограничение, то выходное сообщение

    Exiting due to infeasibility: Singleton variables in
    equality constraints are not feasible.
  • Если одноэлементная переменная может быть решена для, но решение нарушает верхние или нижние границы, то выходное сообщение

    Exiting due to infeasibility: Singleton variables in
    the equality constraints are not within bounds.

Примечание

Шаги предварительной обработки совокупны. Например, даже если ваша матрица ограничений не ссорится всех нулей для начала, другие шаги предварительной обработки могут заставить такую строку происходить.

Когда предварительная обработка заканчивается, итеративная часть алгоритма начинается, пока критерию остановки не соответствуют. (Для получения дополнительной информации о невязках, основной проблеме, двойная проблема и связанный критерий остановки, видят Устаревшее внутренней точкой Линейное Программирование.), Если невязки растут вместо того, чтобы стать меньшими, или невязки, ни не растут, ни уменьшаются, один из двух после сообщений завершения отображен, соответственно,

One or more of the residuals, duality gap, or total relative error 
has grown 100000 times greater than its minimum value so far:

или

One or more of the residuals, duality gap, or total relative error 
has stalled:

После того, как одно из этих сообщений отображено, оно сопровождается одним из следующих сообщений, указывающих, что двойное, основное, или оба, кажется, неосуществимы.

  • The dual appears to be infeasible (and the primal unbounded). (The primal residual < OptimalityTolerance.)

  • The primal appears to be infeasible (and the dual unbounded). (The dual residual < OptimalityTolerance.)

  • The dual appears to be infeasible (and the primal unbounded) since the dual residual > sqrt(OptimalityTolerance). (The primal residual < 10*OptimalityTolerance.)

  • The primal appears to be infeasible (and the dual unbounded) since the primal residual > sqrt(OptimalityTolerance). (The dual residual < 10*OptimalityTolerance.)

  • The dual appears to be infeasible and the primal unbounded since the primal objective < -1e+10 and the dual objective < 1e+6.

  • The primal appears to be infeasible and the dual unbounded since the dual objective > 1e+10 and the primal objective > -1e+6.

  • Both the primal and the dual appear to be infeasible.

Например, основное (цель) может быть неограниченным и основная невязка, которая является мерой основной ограничительной удовлетворенности, может быть маленьким.

Алгоритм внутренней точки

Алгоритм 'interior-point' подобен 'interior-point-legacy', но с более эффективной стандартной программой факторизации, и с различной предварительной обработкой. Смотрите Внутреннюю точку linprog Алгоритм.

Ссылки

[1] Dantzig, G.B., А. Орден и П. Вольф. “Обобщенный Симплекс-метод для Минимизации Линейной Формы Под Линейными Ограничениями Неравенства”. Тихоокеанская Математика Журнала., Издание 5, 1955, стр 183–195.

[2] Mehrotra, S. “На Реализации Основного Двойного Метода внутренней точки”. SIAM Journal на Оптимизации, Издании 2, 1992, стр 575–601.

[3] Чжан, Y., “Решая Крупномасштабные Линейные Программы Методами внутренней точки Под Средой MATLAB”. Технический отчет TR96-01, Отдел Математики и Статистики, Университета Мэриленда, округ Балтимор, Балтимора, MD, июль 1995.

Представлено до R2006a

Для просмотра документации необходимо авторизоваться на сайте