arburg

Авторегрессивные параметры модели все-полюса — метод Города

Синтаксис

a = arburg(x,p)
[a,e] = arburg(x,p)
[a,e,rc] = arburg(x,p)

Описание

a = arburg(x,p) возвращает нормированное авторегрессивное (AR) параметры, соответствующие модели порядка p для входного массива, x. Если x является вектором, то выходной массив, a, является вектором - строкой. Если x является матрицей, то параметры вдоль n th строка модели a n th столбец x. a имеет p + 1 столбец. p должен быть меньше, чем число элементов (или строки) x.

[a,e] = arburg(x,p) возвращает предполагаемую дисперсию, e, белого шумового входа.

[a,e,rc] = arburg(x,p) возвращает отражательные коэффициенты в rc.

Примеры

свернуть все

Используйте вектор полиномиальных коэффициентов, чтобы сгенерировать AR (4) процесс путем фильтрации 1 024 выборок белого шума. Сбросьте генератор случайных чисел для восстанавливаемых результатов. Используйте метод Города, чтобы оценить коэффициенты.

rng default

A = [1 -2.7607 3.8106 -2.6535 0.9238];

y = filter(1,A,0.2*randn(1024,1));

arcoeffs = arburg(y,4)
arcoeffs = 1×5

    1.0000   -2.7743    3.8408   -2.6843    0.9360

Сгенерируйте 50 реализации процесса, изменив каждый раз отклонение входного шума. Сравните Оцененные по городу отклонения с фактическими значениями.

nrealiz = 50;

noisestdz = rand(1,nrealiz)+0.5;

randnoise = randn(1024,nrealiz);

for k = 1:nrealiz
    y = filter(1,A,noisestdz(k) * randnoise(:,k));
    [arcoeffs,noisevar(k)] = arburg(y,4);
end

plot(noisestdz.^2,noisevar,'*')
title('Noise Variance')
xlabel('Input')
ylabel('Estimated')

Повторите процедуру с помощью многоканального синтаксиса arburg.

realiz = bsxfun(@times,noisestdz,randnoise);

Y = filter(1,A,realiz);

[coeffs,variances] = arburg(Y,4);

hold on
plot(noisestdz.^2,variances,'o')

q = legend('Single channel loop','Multichannel');
q.Location = 'best';

Больше о

свернуть все

AR (p) модель

В модели AR порядка p текущая производительность является линейной комбинацией прошлого p выходные параметры плюс белый шумовой вход. Веса на p мимо выходных параметров минимизируют среднеквадратическую ошибку прогноза авторегрессии. Если y (n) является текущим значением вывода, и x (n) является нулевым средним белым шумовым входом, модель AR (p):

y(n)+k=1pa(k)y(nk)=x(n).

Отражательные коэффициенты

reflection coefficients является частичными коэффициентами автокорреляции, масштабируемыми –1. Отражательные коэффициенты указывают на временную зависимость между y (n) и y (n – k) после вычитания прогноза на основе прошедшего k – 1 временной шаг.

Алгоритмы

Метод Города оценивает отражательные коэффициенты и использует отражательные коэффициенты, чтобы оценить параметры AR рекурсивно. Можно найти рекурсию и образовать решетку отношения фильтра, описывающие обновление прямых и обратных ошибок прогноза в [1].

Ссылки

[1] Кей, Стивен М. Современная спектральная оценка: теория и приложение. Englewood Cliffs, NJ: Prentice Hall, 1988.

Представлено до R2006a

Для просмотра документации необходимо авторизоваться на сайте