CompactGeneralizedLinearModel

Пакет: classreg.regr

Компактный обобщенный класс модели линейной регрессии

Описание

CompactGeneralizedLinearModel является компактным обобщенным объектом модели линейной регрессии. Это использует меньше памяти, чем полная обобщенная модель линейной регрессии (GeneralizedLinearModel), потому что это не хранит данные, используемые, чтобы соответствовать модели. Компактная модель не хранит входные данные, таким образом, вы не можете использовать ее, чтобы выполнить определенные задачи. Однако можно использовать компактную обобщенную модель линейной регрессии, чтобы предсказать ответы с помощью новых входных данных.

Подходящие операции (fitlm, fitglm...) автоматически используют компактные объекты, когда вы работаете с длинными массивами. Подходящие операции с таблицами в оперативной памяти и массивами производят полные объекты. Можно использовать метод compact, чтобы сделать их меньшими.

Конструкция

compactMdl = compact(mdl) возвращает компактную обобщенную модель compactMdl линейной регрессии в полную обобщенную модель mdl линейной регрессии. Для получения дополнительной информации смотрите compact.

Входные параметры

развернуть все

Полная обобщенная модель линейной регрессии, заданная как объект GeneralizedLinearModel.

Свойства

развернуть все

Это свойство доступно только для чтения.

Ковариационная матрица содействующих оценок, заданных как p-by-p матрица числовых значений. p является количеством коэффициентов в подобранной модели.

Для получения дополнительной информации смотрите Содействующие Стандартные погрешности и Доверительные интервалы.

Типы данных: single | double

Это свойство доступно только для чтения.

Содействующие имена, заданные как массив ячеек из символьных векторов, каждый содержащий имя соответствующего термина.

Типы данных: cell

Это свойство доступно только для чтения.

Содействующие значения, заданные как таблица. Coefficients содержит одну строку для каждого коэффициента и этих столбцов:

  • Estimate — Предполагаемое содействующее значение

  • SE — Стандартная погрешность оценки

  • tStatt - статистическая величина для теста, что коэффициент является нулем

  • pValuep - значение для t - статистическая величина

Используйте anova (только для модели линейной регрессии) или coefTest, чтобы выполнить другие тесты на коэффициентах. Используйте coefCI, чтобы найти доверительные интервалы содействующих оценок.

Чтобы получить любой из этих столбцов как вектор, индексируйте в свойство с помощью записи через точку. Например, получите предполагаемый вектор коэффициентов в модели mdl:

beta = mdl.Coefficients.Estimate

Типы данных: table

Это свойство доступно только для чтения.

Отклонение подгонки, заданной как числовое значение. Отклонение полезно для сравнения двух моделей, когда каждый - особый случай другого. Различие между отклонением этих двух моделей имеет распределение хи-квадрат со степенями свободы, равными различию в количестве предполагаемых параметров между этими двумя моделями. Для получения дополнительной информации об отклонении смотрите Отклонение.

Типы данных: single | double

Это свойство доступно только для чтения.

Степени свободы для ошибки (невязки), равняйтесь количеству наблюдений минус количество предполагаемых коэффициентов, заданных как положительное целое число.

Типы данных: double

Это свойство доступно только для чтения.

Масштабный коэффициент отклонения ответа, заданного как числовое значение. Dispersion умножает функцию отклонения для распределения.

Например, функцией отклонения для биномиального распределения является p (1–p)/n, где p является параметром вероятности, и n является параметром объема выборки. Если Dispersion около 1, отклонение данных, кажется, соглашается с теоретическим отклонением биномиального распределения. Если Dispersion больше, чем 1, данные “сверхрассеиваются” относительно биномиального распределения.

Типы данных: double

Это свойство доступно только для чтения.

Отметьте, чтобы указать на использование дисперсионного масштабного коэффициента, заданного как логическое значение. Используйте DispersionEstimated, чтобы указать, использовал ли fitglm масштабный коэффициент Dispersion, чтобы вычислить стандартные погрешности для коэффициентов в Coefficients.SE. Если DispersionEstimated является false, то fitglm использовал теоретическое значение отклонения.

  • DispersionEstimated может быть false только для дистрибутивов 'poisson' или 'binomial'.

  • Чтобы установить DispersionEstimated, установите пару "имя-значение" DispersionFlag в fitglm.

Типы данных: логический

Это свойство доступно только для чтения.

Обобщенная информация распределения, указанная как структура со следующими полями, относящимися к обобщенному распределению.

Поле Описание
NameИмя распределения. Опции: 'normal', 'binomial', 'poisson', 'gamma' или 'inverse gaussian'.
DevianceFunctionФункция, которая вычисляет компоненты отклонения как функция подходящих значений параметров и значений ответа.
VarianceFunctionФункция, которая вычисляет теоретическое отклонение для распределения как функция подходящих значений параметров. Когда DispersionEstimated является true, Dispersion умножает функцию отклонения в вычислении содействующих стандартных погрешностей.

Типы данных: struct

Это свойство доступно только для чтения.

Информация модели, указанная как объект LinearFormula.

Отобразите формулу подобранной модели mdl с помощью записи через точку:

mdl.Formula

Это свойство доступно только для чтения.

Регистрируйте вероятность образцового распределения в значениях ответа, заданных как числовое значение. Среднее значение адаптировано из модели, и другие параметры оцениваются как часть образцовой подгонки.

Типы данных: single | double

Это свойство доступно только для чтения.

Критерий образцового сравнения, заданного как структура с этими полями:

  • AIC — Критерий информации о Akaike.     AIC = –2*logL + 2*m, где logL является loglikelihood и m, является количеством предполагаемых параметров.

  • AICc — Критерий информации о Akaike исправляется для объема выборки.     AICc = AIC + (2*m*(m+1))/(n–m–1), где n является количеством наблюдений.

  • BIC — Байесов информационный критерий.     BIC = –2*logL + m*log(n).

  • CAIC — Сопоставимый информационный критерий Akaike.     CAIC = –2*logL + m*(log(n)+1).

Информационные критерии являются образцовыми инструментами выбора, которые можно использовать, чтобы сравнить подгонку многоуровневых моделей к тем же данным. Эти критерии являются основанными на вероятности мерами образцовой подгонки, которые включают штраф за сложность (а именно, количество параметров). Различные информационные критерии отличает форма штрафа.

Когда вы сравниваете многоуровневые модели, модель с самым низким информационным значением критерия является моделью оптимальной подгонки. Модель оптимальной подгонки может отличаться в зависимости от критерия, используемого для образцового сравнения.

Чтобы получить любое из значений критерия как скаляр, индексируйте в свойство с помощью записи через точку. Например, получите значение AIC aic в модели mdl:

aic = mdl.ModelCriterion.AIC

Типы данных: struct

Это свойство доступно только для чтения.

Количество коэффициентов модели, заданных как положительное целое число. NumCoefficients включает коэффициенты, которые обнуляются, когда образцовые условия имеют неполный ранг.

Типы данных: double

Это свойство доступно только для чтения.

Количество предполагаемых коэффициентов в модели, заданной как положительное целое число. NumEstimatedCoefficients не включает коэффициенты, которые обнуляются, когда образцовые условия имеют неполный ранг. NumEstimatedCoefficients является степенями свободы для регрессии.

Типы данных: double

Это свойство доступно только для чтения.

Количество наблюдений подходящая функция, используемая в подборе кривой, заданном как положительное целое число. NumObservations является количеством наблюдений, предоставленных в исходной таблице, наборе данных или матрице, минус любые исключенные строки (набор с аргументом пары "имя-значение" 'Exclude') или строки с отсутствующими значениями.

Типы данных: double

Это свойство доступно только для чтения.

Количество переменных прогноза раньше соответствовало модели, заданной как положительное целое число.

Типы данных: double

Это свойство доступно только для чтения.

Количество переменных во входных данных, заданных как положительное целое число. NumVariables является количеством переменных в исходной таблице или наборе данных или общем количестве столбцов в матрице предиктора и векторе отклика.

NumVariables также включает любые переменные, которые не используются, чтобы соответствовать модели как предикторам или как ответ.

Типы данных: double

Это свойство доступно только для чтения.

Имена предикторов раньше соответствовали модели, заданной как массив ячеек из символьных векторов.

Типы данных: cell

Это свойство доступно только для чтения.

Имя переменной отклика, заданное как вектор символов.

Типы данных: char

Это свойство доступно только для чтения.

Значение R-squared для модели, заданной как структура с пятью полями:

  • Ordinary — Обычный (неприспособленный) R-squared

  • Adjusted — R-squared, настроенный для количества коэффициентов

  • LLR — Логарифмическое отношение правдоподобия

  • Deviance — Отклонение

  • AdjGeneralized — Настроенный обобщил R-squared

Значение R-squared является пропорцией полной суммы квадратов, объясненных моделью. Обычное значение R-squared относится к свойствам SSR и SST:

Rsquared = SSR/SST = 1 - SSE/SST.

Чтобы получить любое из этих значений как скаляр, индексируйте в свойство с помощью записи через точку. Например, настроенное значение R-squared в mdl

r2 = mdl.Rsquared.Adjusted

Типы данных: struct

Это свойство доступно только для чтения.

Сумма квадратичных невязок (невязки), заданные как числовое значение.

Теорема Пифагора подразумевает

SST = SSE + SSR,

где SST является полной суммой квадратов, SSE является суммой квадратичных невязок, и SSR является суммой квадратов регрессии.

Типы данных: single | double

Это свойство доступно только для чтения.

Сумма квадратов регрессии, заданная как числовое значение. Сумма квадратов регрессии равна сумме отклонений в квадрате подходящих значений от их среднего значения.

Теорема Пифагора подразумевает

SST = SSE + SSR,

где SST является полной суммой квадратов, SSE является суммой квадратичных невязок, и SSR является суммой квадратов регрессии.

Типы данных: single | double

Это свойство доступно только для чтения.

Полная сумма квадратов, заданных как числовое значение. Полная сумма квадратов равна сумме отклонений в квадрате вектора отклика y от mean(y).

Теорема Пифагора подразумевает

SST = SSE + SSR,

где SST является полной суммой квадратов, SSE является суммой квадратичных невязок, и SSR является суммой квадратов регрессии.

Типы данных: single | double

Это свойство доступно только для чтения.

Информация о переменных, содержимых в Variables, заданном как таблица с одной строкой для каждой переменной и столбцов, описана в этой таблице.

СтолбецОписание
ClassПеременный класс, заданный как массив ячеек из символьных векторов, такой как 'double' и 'categorical'
Range

Переменный диапазон, заданный как массив ячеек векторов

  • Непрерывная переменная — Двухэлементный векторный [min,max], минимальные и максимальные значения

  • Категориальная переменная — Вектор отличных значений переменных

InModelИндикатор которого переменные находятся в подобранной модели, заданной как логический вектор. Значением является true, если модель включает переменную.
IsCategoricalИндикатор категориальных переменных, заданных как логический вектор. Значением является true, если переменная является категориальной.

VariableInfo также включает любые переменные, которые не используются, чтобы соответствовать модели как предикторам или как ответ.

Типы данных: table

Это свойство доступно только для чтения.

Имена переменных, заданных как массив ячеек из символьных векторов.

  • Если подгонка основана на таблице или наборе данных, это свойство обеспечивает имена переменных в таблице или наборе данных.

  • Если подгонка основана на матрице предиктора и векторе отклика, VariableNames содержит значения, заданные аргументом пары "имя-значение" 'VarNames' подходящего метода. Значением по умолчанию 'VarNames' является {'x1','x2',...,'xn','y'}.

VariableNames также включает любые переменные, которые не используются, чтобы соответствовать модели как предикторам или как ответ.

Типы данных: cell

Методы

coefCIДоверительные интервалы содействующих оценок обобщенной линейной модели
coefTestЛинейный тест гипотезы на обобщенных коэффициентах модели линейной регрессии
devianceTestАнализ отклонения
dispОтобразите обобщенную модель линейной регрессии
fevalОцените обобщенный прогноз модели линейной регрессии
plotSliceГрафик срезов через подходящую обобщенную поверхность линейной регрессии
предсказатьПредскажите ответ обобщенной модели линейной регрессии
случайныйМоделируйте ответы для обобщенной модели линейной регрессии

Копировать семантику

Значение. Чтобы изучить, как классы значения влияют на операции копии, смотрите Копирование Объектов (MATLAB).

Примеры

свернуть все

Уменьшайте размер полного, соответствовал обобщенной модели линейной регрессии путем отбрасывания выборочных данных и некоторой информации, связанной с подходящим процессом.

Загрузите данные в рабочую область. Моделируемые выборочные данные содержат 15 000 наблюдений и 45 переменных прогноза.

load(fullfile(matlabroot,'examples','stats','largedata4reg.mat'))

Соответствуйте обобщенной модели линейной регрессии к данным с помощью первых 15 переменных прогноза.

mdl = fitglm(X(:,1:15),Y)
mdl = 
Generalized linear regression model:
    y ~ [Linear formula with 16 terms in 15 predictors]
    Distribution = Normal

Estimated Coefficients:
                    Estimate          SE         tStat       pValue   
                   ___________    __________    _______    ___________

    (Intercept)         3.2903    0.00010447      31497              0
    x1              -0.0006461    4.9991e-08     -12924              0
    x2             -0.00024739    8.6874e-08    -2847.7              0
    x3             -9.5161e-05    1.1138e-07    -854.38              0
    x4              0.00013143     1.551e-07     847.35              0
    x5               7.163e-05    1.9793e-07      361.9              0
    x6              4.5064e-06    2.2247e-07     20.257     4.9539e-90
    x7             -2.6258e-05    2.5462e-07    -103.13              0
    x8               6.284e-05    2.5633e-07     245.15              0
    x9             -0.00014288     2.817e-07    -507.19              0
    x10            -2.2642e-05    3.0963e-07    -73.127              0
    x11            -6.0227e-05    3.1639e-07    -190.36              0
    x12             1.1665e-05    3.3921e-07     34.388    1.6995e-249
    x13             3.8595e-05    3.5601e-07     108.41              0
    x14             0.00010021    4.0312e-07     248.57              0
    x15            -6.5674e-06    4.1692e-07    -15.752      1.844e-55


15000 observations, 14984 error degrees of freedom
Estimated Dispersion: 0.000164
F-statistic vs. constant model: 1.18e+07, p-value = 0

Уплотните модель. Компактная модель отбрасывает исходные выборочные данные и некоторую информацию, связанную с подходящим процессом, таким образом, это использует меньше памяти, чем полная модель.

compactMdl = compact(mdl)
compactMdl = 
Compact generalized linear regression model:
    y ~ [Linear formula with 16 terms in 15 predictors]
    Distribution = Normal

Estimated Coefficients:
                    Estimate          SE         tStat       pValue   
                   ___________    __________    _______    ___________

    (Intercept)         3.2903    0.00010447      31497              0
    x1              -0.0006461    4.9991e-08     -12924              0
    x2             -0.00024739    8.6874e-08    -2847.7              0
    x3             -9.5161e-05    1.1138e-07    -854.38              0
    x4              0.00013143     1.551e-07     847.35              0
    x5               7.163e-05    1.9793e-07      361.9              0
    x6              4.5064e-06    2.2247e-07     20.257     4.9539e-90
    x7             -2.6258e-05    2.5462e-07    -103.13              0
    x8               6.284e-05    2.5633e-07     245.15              0
    x9             -0.00014288     2.817e-07    -507.19              0
    x10            -2.2642e-05    3.0963e-07    -73.127              0
    x11            -6.0227e-05    3.1639e-07    -190.36              0
    x12             1.1665e-05    3.3921e-07     34.388    1.6995e-249
    x13             3.8595e-05    3.5601e-07     108.41              0
    x14             0.00010021    4.0312e-07     248.57              0
    x15            -6.5674e-06    4.1692e-07    -15.752      1.844e-55


15000 observations, 14984 error degrees of freedom
Estimated Dispersion: 0.000164
F-statistic vs. constant model: 1.18e+07, p-value = 0

Расширенные возможности

Введенный в R2017b