Класс: LinearMixedModel
Оценки фиксированных эффектов и связанной статистики
beta = fixedEffects(lme)[beta,betanames]
= fixedEffects(lme)[beta,betanames,stats]
= fixedEffects(lme)[beta,betanames,stats]
= fixedEffects(lme,Name,Value)lme — Линейная модель смешанных эффектовLinearMixedModelЛинейная модель смешанных эффектов, заданная как объект LinearMixedModel, созданный с помощью fitlme или fitlmematrix.
Укажите необязательные аргументы в виде пар ""имя, значение"", разделенных запятыми. Имя (Name) — это имя аргумента, а значение (Value) — соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.
\alpha Уровень значенияУровень значения, заданный как пара, разделенная запятой, состоящая из 'Alpha' и скалярного значения в области значений от 0 до 1. Для значения α, доверительный уровень равняется 100* (1–α) %.
Например, для 99% доверительных интервалов, можно задать доверительный уровень можно следующим образом.
Пример: 'Alpha',0.01
Типы данных: single | double
'DFMethod' — Метод для вычисления аппроксимированных степеней свободы'residual' (значение по умолчанию) | 'satterthwaite' | 'none'Метод для вычисления аппроксимированных степеней свободы для t - статистическая величина, которая тестирует коэффициенты фиксированных эффектов против 0, заданный как пара, разделенная запятой, состоящая из 'DFMethod' и одно из следующих.
'residual' | Значение по умолчанию. Степени свободы приняты, чтобы быть постоянными и равными n – p, где n является количеством наблюдений, и p является количеством фиксированных эффектов. |
'satterthwaite' | Приближение Satterthwaite. |
'none' | Все степени свободы установлены в бесконечность. |
Например, можно задать приближение Satterthwaite можно следующим образом.
Пример: 'DFMethod','satterthwaite'
\beta Содействующие оценки фиксированных эффектовСодействующие оценки фиксированных эффектов подходящей линейной модели lme смешанных эффектов, возвращенной как вектор.
betanames — Имена коэффициентов фиксированных эффектовИмена коэффициентов фиксированных эффектов в beta, возвращенном как таблица.
статистика Фиксированные эффекты оценивают и связанная статистикаФиксированные эффекты оценивают и связанная статистика, возвращенная как массив набора данных, который ссорится для каждого из фиксированных эффектов и одного столбца для каждых из следующих статистических данных.
Name | Имя фиксированного коэффициента эффекта |
Estimate | Предполагаемое содействующее значение |
SE | Стандартная погрешность оценки |
tStat | t- для теста, что коэффициент является нулем |
DF | Предполагаемые степени свободы для t - статистическая величина |
pValue | p- для the t-статистической-величины |
Lower | Нижний предел 95%-го доверительного интервала для коэффициента фиксированного эффекта |
Upper | Верхний предел 95%-го доверительного интервала для коэффициента фиксированного эффекта |
Загрузите выборочные данные.
load(fullfile(matlabroot,'examples','stats','weight.mat'));
Набор данных weight содержит данные из продольного исследования, где 20 предметов случайным образом присвоены 4 программам подготовки и их потере веса, зарегистрирован более чем шесть 2-недельных периодов времени. Это - моделируемые данные.
Храните данные в таблице. Задайте Subject и Program как категориальные переменные.
tbl = table(InitialWeight,Program,Subject,Week,y); tbl.Subject = nominal(tbl.Subject); tbl.Program = nominal(tbl.Program);
Соответствуйте линейной модели смешанных эффектов, где начальный вес, тип программы, неделя и взаимодействие между неделей и программой являются фиксированными эффектами. Прерывание и неделя отличается предметом.
lme = fitlme(tbl,'y ~ InitialWeight + Program*Week + (Week|Subject)');Отобразите содействующие оценки фиксированных эффектов и соответствующие имена фиксированных эффектов.
[beta,betanames] = fixedEffects(lme)
beta = 9×1
0.6610
0.0032
0.3608
-0.0333
0.1132
0.1732
0.0388
0.0305
0.0331
betanames=9×1 table
Name
________________
'(Intercept)'
'InitialWeight'
'Program_B'
'Program_C'
'Program_D'
'Week'
'Program_B:Week'
'Program_C:Week'
'Program_D:Week'
Загрузите выборочные данные.
load carbigСоответствуйте линейной модели смешанных эффектов для миль на галлон (MPG) с фиксированными эффектами для ускорения и лошадиной силы, и потенциально коррелировал случайные эффекты для прерывания и ускорения, сгруппированного модельным годом. Во-первых, храните данные в таблице.
tbl = table(Acceleration,Horsepower,Model_Year,MPG);
Соответствуйте модели.
lme = fitlme(tbl, 'MPG ~ Acceleration + Horsepower + (Acceleration|Model_Year)');Вычислите содействующие оценки фиксированных эффектов и связанную статистику.
[~,~,stats] = fixedEffects(lme)
stats =
Fixed effect coefficients: DFMethod = 'Residual', Alpha = 0.05
Name Estimate SE tStat DF pValue
'(Intercept)' 50.133 2.2652 22.132 389 7.7727e-71
'Acceleration' -0.58327 0.13394 -4.3545 389 1.7075e-05
'Horsepower' -0.16954 0.0072609 -23.35 389 5.188e-76
Lower Upper
45.679 54.586
-0.84661 -0.31992
-0.18382 -0.15527
Маленькое - значения (под pValue) указывают, что все коэффициенты фиксированных эффектов являются значительными.
Загрузите выборочные данные.
load(fullfile(matlabroot,'examples','stats','shift.mat'));
Данные показывают отклонения от целевой качественной характеристики, измеренной от продуктов, что пять операторов производят во время трех сдвигов: утро, вечер и ночь. Это - рандомизированная блочная конструкция, где операторы являются блоками. Эксперимент разработан, чтобы изучить влияние времени сдвига на производительности. Критерием качества работы является отклонение качественных характеристик от целевого значения. Это - моделируемые данные.
Shift и Operator являются номинальными переменными.
shift.Shift = nominal(shift.Shift); shift.Operator = nominal(shift.Operator);
Соответствуйте линейной модели смешанных эффектов случайным прерыванием, сгруппированным оператором, чтобы оценить, если производительность значительно отличается согласно времени сдвига.
lme = fitlme(shift,'QCDev ~ Shift + (1|Operator)');Вычислите 99% доверительных интервалов для коэффициентов фиксированных эффектов, с помощью остаточного метода, чтобы вычислить степени свободы. Это - метод по умолчанию.
[~,~,stats] = fixedEffects(lme,'alpha',0.01)stats =
Fixed effect coefficients: DFMethod = 'Residual', Alpha = 0.01
Name Estimate SE tStat DF pValue
'(Intercept)' 3.1196 0.88681 3.5178 12 0.0042407
'Shift_Morning' -0.3868 0.48344 -0.80009 12 0.43921
'Shift_Night' 1.9856 0.48344 4.1072 12 0.0014535
Lower Upper
0.41081 5.8284
-1.8635 1.0899
0.5089 3.4623
Вычислите 99% доверительных интервалов для коэффициентов фиксированных эффектов, с помощью приближения Satterthwaite, чтобы вычислить степени свободы.
[~,~,stats] = fixedEffects(lme,'DFMethod','satterthwaite','alpha',0.01)
stats =
Fixed effect coefficients: DFMethod = 'Satterthwaite', Alpha = 0.01
Name Estimate SE tStat DF pValue
'(Intercept)' 3.1196 0.88681 3.5178 6.123 0.01214
'Shift_Morning' -0.3868 0.48344 -0.80009 10 0.44225
'Shift_Night' 1.9856 0.48344 4.1072 10 0.00212
Lower Upper
-0.14122 6.3804
-1.919 1.1454
0.45343 3.5178
Приближение Satterthwaite обычно производит меньшие значения DF, чем остаточный метод. Именно поэтому это производит больше - значения (pValue) и большие доверительные интервалы (см. Lower и Upper).
LinearMixedModel | coefCI | coefTest | fitlme | randomEffects
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.