Класс LinearMixedModel

Линейный класс модели смешанных эффектов

Описание

Объект LinearMixedModel представляет модель переменной отклика с фиксированными и случайными эффектами. Это включает данные, образцовое описание, подходящие коэффициенты, параметры ковариации, матрицы проекта, невязки, остаточные графики и другую диагностическую информацию для линейной модели смешанных эффектов. Можно предсказать, что образцовые ответы с predict функционируют и генерируют случайные данные в новых точках проекта с помощью функции random.

Конструкция

Можно соответствовать линейной модели смешанных эффектов использование fitlme(tbl,formula), если данные находятся в массиве набора данных или таблице. Также, если ваша модель легко не описана с помощью формулы, можно создать матрицы, чтобы задать фиксированные и случайные эффекты и соответствовать модели с помощью fitlmematrix(X,y,Z,G).

Входные параметры

развернуть все

Входные данные, который включает переменную отклика, переменные прогноза и группирующие переменные, заданные как массив dataset или таблица. Переменные прогноза могут быть непрерывными или группирующие переменные (см. Группирующие переменные). Необходимо задать модель для переменных с помощью formula.

Типы данных: table

Формула для образцовой спецификации, заданной как вектор символов или скаляр строки формы 'y ~ fixed + (random1|grouping1) + ... + (randomR|groupingR)'. Для полного описания смотрите Формулу.

Пример: 'y ~ treatment +(1|block)'

Фиксированные эффекты разрабатывают матрицу, заданную как n-by-p матрица, где n является количеством наблюдений, и p является количеством переменных прогноза фиксированных эффектов. Каждая строка X соответствует одному наблюдению, и каждый столбец X соответствует одной переменной.

Типы данных: single | double

Значения ответа, заданные как n-by-1 вектор, где n является количеством наблюдений.

Типы данных: single | double

Проект случайных эффектов, заданный как любое из следующих.

  • Если существует один член в модели случайных эффектов, то Z должен быть n-by-q матрица, где n является количеством наблюдений, и q является количеством переменных в термине случайных эффектов.

  • Если существуют условия случайных эффектов R, то Z должен быть массивом ячеек длины R. Каждая ячейка Z содержит n-by-q (r) матрица проекта Z{r}, r = 1, 2..., R, соответствуя каждому термину случайных эффектов. Здесь, q (r) является количеством случайного термина эффектов в r th, случайные эффекты разрабатывают матрицу, Z{r}.

Типы данных: single | double | cell

Группирующая переменная или переменные, заданные как любое из следующих.

  • Если существует один термин случайных эффектов, то G должен быть n-by-1 вектор, соответствующий одной группирующей переменной с уровнями M или группами.

    G может быть категориальным вектором, логическим вектором, числовым вектором, символьным массивом, массивом строк или массивом ячеек из символьных векторов.

  • Если существует несколько условий случайных эффектов, то G должен быть массивом ячеек длины R. Каждая ячейка G содержит группирующую переменную G{r}, r = 1, 2..., R, с M (r) уровни.

    G{r} может быть категориальным вектором, логическим вектором, числовым вектором, символьным массивом, массивом строк или массивом ячеек из символьных векторов.

Типы данных: categorical | logical | single | double | char | string | cell

Свойства

развернуть все

Коэффициент фиксированных эффектов оценивает и связанная статистика, сохраненная как массив набора данных, содержащий следующие поля.

NameИмя термина.
EstimateОриентировочная стоимость коэффициента.
SEСтандартная погрешность коэффициента.
tStatt- для тестирования нулевой гипотезы, которую равен нулю коэффициент.
DFСтепени свободы для t - тест. Метод, чтобы вычислить DF задан аргументом пары "имя-значение" 'DFMethod'. Coefficients всегда использует метод 'Residual' для 'DFMethod'.
pValuep - значение для t - тест.
LowerНижний предел доверительного интервала для коэффициента. Coefficients всегда использует 95%-й доверительный уровень, т.е. 'alpha' 0.05.
UpperВерхний предел доверительного интервала для коэффициента. Coefficients всегда использует 95%-й доверительный уровень, т.е. 'alpha' 0.05.

Можно изменить 'DFMethod' и 'alpha' в то время как вычислительные доверительные интервалы для или зафиксированное включение гипотез тестирования - и случайные эффекты, с помощью методов coefTest и coefCI.

Ковариация предполагаемых коэффициентов фиксированных эффектов линейной модели смешанных эффектов, сохраненной как p-by-p матрица, где p является количеством коэффициентов фиксированных эффектов.

Можно отобразить параметры ковариации, сопоставленные со случайными эффектами с помощью метода covarianceParameters.

Типы данных: double

Имена коэффициентов фиксированных эффектов линейной модели смешанных эффектов, сохраненной как 1 p массивом ячеек из символьных векторов.

Типы данных: cell

Остаточные степени свободы, сохраненные как положительное целочисленное значение. DFE = np, где n является количеством наблюдений и p, является количеством коэффициентов фиксированных эффектов.

Это соответствует методу 'Residual' вычисления степеней свободы в методах randomEffects и fixedEffects.

Типы данных: double

Метод раньше соответствовал линейной модели смешанных эффектов, сохраненной как любое из следующих.

  • ML, если подходящий метод является наибольшим правдоподобием

  • REML, если подходящий метод является ограниченным наибольшим правдоподобием

Типы данных: char

Спецификация условий фиксированных эффектов, условий случайных эффектов и группирующих переменных, которые задают линейную модель смешанных эффектов, сохраненную как объект.

Для получения дополнительной информации о том, как задать модель, чтобы соответствовать использованию формулы, видеть Формулу.

Максимизируемая логарифмическая вероятность или максимизируемая ограниченная логарифмическая вероятность подходящей линейной модели смешанных эффектов в зависимости от подходящего метода вы выбираете, сохраненный как скалярное значение.

Типы данных: double

Образцовый критерий, чтобы сравнить адаптированные линейные модели смешанных эффектов, сохраненные как массив набора данных следующими столбцами.

AICКритерий информации о Akaike
BICБайесов информационный критерий
LoglikelihoodРегистрируйте значение вероятности модели
Deviance– 2 раза логарифмическая вероятность модели

Если n является количеством наблюдений, используемых в подборе кривой модели, и p является количеством коэффициентов фиксированных эффектов, то для вычисления AIC и BIC,

  • Общим количеством параметров является nc + p + 1, где nc является общим количеством параметров в ковариации случайных эффектов, исключая остаточное отклонение

  • Эффективное количество наблюдений

    • n, когда подходящий метод является наибольшим правдоподобием (ML)

    • n p, когда подходящий метод является ограниченным наибольшим правдоподобием (REML)

ML или оценка REML, на основе подходящего метода, используемого для оценки σ2, сохраненный как значение положительной скалярной величины. σ2 является остаточным отклонением или отклонением остаточного члена наблюдения линейной модели смешанных эффектов.

Типы данных: double

Количество коэффициентов фиксированных эффектов в подходящей линейной модели смешанных эффектов, сохраненной как положительное целочисленное значение.

Типы данных: double

Количество предполагаемых коэффициентов фиксированных эффектов в подходящей линейной модели смешанных эффектов, сохраненной как положительное целочисленное значение.

Типы данных: double

Количество наблюдений используется в подгонке, сохраненной как положительное целочисленное значение. Это - количество строк в таблице или массиве набора данных или матрицах проекта минус исключенные строки или строки со значениями NaN.

Типы данных: double

Количество переменных, используемых в качестве предикторов в линейной модели смешанных эффектов, сохраненной как положительное целочисленное значение.

Типы данных: double

Общее количество переменных включая ответ и предикторы, сохраненные как положительное целочисленное значение.

  • Если выборочные данные находятся в таблице или массиве набора данных tbl, NumVariables является общим количеством переменных в tbl включая переменную отклика.

  • Если подгонка основана на матричном входе, NumVariables является общим количеством столбцов в матрице предиктора или матриц и вектора отклика.

NumVariables включает переменные, если существует кто-либо, которые не используются в качестве предикторов или в качестве ответа.

Типы данных: double

Информация о наблюдениях, используемых в подгонке, сохраненной как таблица.

ObservationInfo ссорится для каждого наблюдения и следующих четырех столбцов.

WeightsЗначение взвешенной переменной для того наблюдения. Значение по умолчанию равняется 1.
Excludedtrue, если наблюдение было исключено из подгонки с помощью аргумента пары "имя-значение" 'Exclude', false, в противном случае. 1 обозначает true, и 0 обозначает false.
Missing

true, если наблюдение было исключено из подгонки, потому что любое значение ответа или предиктора отсутствует, false, в противном случае.

Отсутствующие значения включают NaN для числовых переменных, пустые ячейки для массивов ячеек, очищают строки для символьных массивов и значение <undefined> для категориальных массивов.

Subsettrue, если наблюдение использовалось в подгонке, false, если это не использовалось, потому что это отсутствует или исключенное.

Типы данных: table

Имена наблюдений используются в подгонке, сохраненной как массив ячеек из символьных векторов.

  • Если данные находятся в таблице или массиве набора данных, tbl, содержа имена наблюдения, ObservationNames имеет те имена.

  • Если данные обеспечиваются в матрицах, или таблице или массиве набора данных без имен наблюдения, то ObservationNames является массивом пустой ячейки.

Типы данных: cell

Имена переменных, которые вы используете в качестве предикторов в подгонке, сохраненной как массив ячеек из символьных векторов, который имеет ту же длину как NumPredictors.

Типы данных: cell

Имя переменной, используемой в качестве переменной отклика в подгонке, сохраненной как вектор символов.

Типы данных: char

Пропорция изменчивости в ответе, объясненном подобранной моделью, сохраненной как структура. Это - коэффициент кратной корреляции или R-squared. Rsquared имеет два поля.

OrdinaryЗначение R-squared, сохраненное как скалярное значение в структуре. Rsquared.Ordinary = 1 – SSE./SST
Adjusted

Значение R-squared, настроенное для количества коэффициентов фиксированных эффектов, сохраненных как скалярное значение в структуре.

Rsquared.Adjusted = 1 – (SSE./SST)*(DFT./DFE),

где DFE = n – p, DFT = n – 1 и n являются общим количеством наблюдений, p является количеством коэффициентов фиксированных эффектов.

Типы данных: struct

Ошибочная сумма квадратов, то есть, сумма условных невязок в квадрате, сохраненных как значение положительной скалярной величины.

SSE = sum((y – F).^2), где y является вектором отклика и F, является подходящим условным ответом линейной модели смешанных эффектов. Условная модель имеет вклады и от зафиксированных и от случайных эффектов.

Типы данных: double

Сумма квадратов регрессии, то есть, сумма квадратов, объясненная линейной регрессией смешанных эффектов, сохраненной как значение положительной скалярной величины. Это - сумма отклонений в квадрате адаптированных значений условного выражения от их среднего значения.

SSR = sum((F – mean(F)).^2), где F является подходящим условным ответом линейной модели смешанных эффектов. Условная модель имеет вклады и от зафиксированных и от случайных эффектов.

Типы данных: double

Полная сумма квадратов, то есть, сумма отклонений в квадрате наблюдаемых значений ответа от их среднего значения, сохраненного как значение положительной скалярной величины.

SST = sum((y – mean(y)).^2) = SSR + SSE, где y является вектором отклика.

Типы данных: double

Переменные, сохраненные как таблица.

  • Если подгонка основана на таблице или массиве набора данных tbl, то Variables идентичен tbl.

  • Если подгонка основана на матричном входе, то Variables является таблицей, содержащей все переменные в матрице предиктора или матрицах и переменной отклика.

Типы данных: table

Информация о переменных, используемых в подгонке, сохраненной как таблица.

VariableInfo ссорится для каждой переменной и содержит следующие четыре столбца.

ClassКласс переменной ('double', 'cell', 'nominal', и так далее).
Range

Диапазон значений переменной.

  • Для числовой переменной это - двухэлементный вектор формы [min,max].

  • Для ячейки или категориальной переменной, это - массив ячеек или категориальный массив, содержащий все уникальные значения переменной.

InModel

true, если переменная является предиктором в подобранной модели.

false, если переменная не находится в подобранной модели.

IsCategorical

true, если переменная имеет тип, который обработан как категориальный предиктор, такой как ячейка, логическая, или категориальная, или если это задано как категориальное аргументом пары "имя-значение" 'Categorical' метода fit.

false, если это - непрерывный предиктор.

Типы данных: table

Имена переменных используются в подгонке, сохраненной как массив ячеек из символьных векторов.

  • Если выборочные данные находятся в таблице или массиве набора данных tbl, VariableNames содержит имена переменных в tbl.

  • Если выборочные данные находятся в матричном формате, то VariableInfo включает имена переменных, которые вы предоставляете при подборе кривой модели. Если вы не предоставляете имена переменных, то VariableInfo содержит имена по умолчанию.

Типы данных: cell

Методы

anovaДисперсионный анализ для линейной модели смешанных эффектов
coefCI Доверительные интервалы для коэффициентов линейной модели смешанных эффектов
coefTestТест гипотезы на фиксированных и случайных эффектах линейной модели смешанных эффектов
сравнениеСравните линейные модели смешанных эффектов
covarianceParametersИзвлеките параметры ковариации линейной модели смешанных эффектов
designMatrixЗафиксированный - и случайные эффекты разрабатывают матрицы
dispОтобразите линейную модель смешанных эффектов
подгонка(Не Рекомендуемый) Подходящая линейная модель смешанных эффектов использование таблиц
fitmatrix Соответствуйте линейной модели смешанных эффектов, использующей матрицы проекта
подходящийПодходящие ответы из линейной модели смешанных эффектов
fixedEffectsОценки фиксированных эффектов и связанной статистики
plotResidualsПостройте невязки линейной модели смешанных эффектов
предсказать Предскажите ответ линейной модели смешанных эффектов
случайный Сгенерируйте случайные ответы из подходящей линейной модели смешанных эффектов
randomEffects Оценки случайных эффектов и связанной статистики
невязкиНевязки подходящей линейной модели смешанных эффектов
ответВектор отклика линейной модели смешанных эффектов

Копировать семантику

Значение. Чтобы изучить, как классы значения влияют на операции копии, смотрите Копирование Объектов (MATLAB).

Примеры

свернуть все

Загрузите выборочные данные.

load flu

Массив набора данных flu имеет переменную Date и 10 переменных, содержащих оцененные уровни гриппа (в 9 различных областях, оцененных от поисковых запросов Google®, плюс общенациональная оценка из Центра по контролю и профилактике заболеваний, CDC).

Чтобы соответствовать линейно смешанной модели эффектов, ваши данные должны быть в правильно отформатированном массиве набора данных. Чтобы соответствовать линейной модели смешанных эффектов уровнями гриппа как ответы и область как переменная прогноза, объедините эти девять столбцов, соответствующих областям в массив. Новый массив набора данных, flu2, должен иметь переменную отклика, FluRate, номинальную переменную, Region, который показывает, какая область каждая оценка от, и группирующая переменная Date.

flu2 = stack(flu,2:10,'NewDataVarName','FluRate',...
    'IndVarName','Region');
flu2.Date = nominal(flu2.Date);

Соответствуйте линейной модели смешанных эффектов фиксированными эффектами для области и случайного прерывания, которое отличается Date.

Поскольку область является номинальной переменной, fitlme берет первую область, NE, как ссылка и создает восемь фиктивных переменных, представляющих другие восемь областей. Например, I[MidAtl] фиктивная переменная, представляющая область MidAtl. Для получения дополнительной информации смотрите Фиктивные Переменные Индикатора.

Соответствующая модель

yim=β0+β1I[MidAtl]i+β2I[ENCentral]i+β3I[WNCentral]i+β4I[SAtl]i+β5I[ESCentral]i+β6I[WSCentral]i+β7I[Mtn]i+β8I[Pac]i+b0m+εim,m=1,2,...,52,

где yim наблюдение i для уровня m из группирующей переменной Date, βj, j = 0, 1..., 8, коэффициенты фиксированных эффектов, b0m случайный эффект для уровня m из группирующей переменной Date, и εim ошибка наблюдения для наблюдения i. Случайный эффект имеет предшествующее распределение, b0mN(0,σb2) и остаточный член имеет распределение, εimN(0,σ2).

lme = fitlme(flu2,'FluRate ~ 1 + Region + (1|Date)')
lme = 
Linear mixed-effects model fit by ML

Model information:
    Number of observations             468
    Fixed effects coefficients           9
    Random effects coefficients         52
    Covariance parameters                2

Formula:
    FluRate ~ 1 + Region + (1 | Date)

Model fit statistics:
    AIC       BIC       LogLikelihood    Deviance
    318.71    364.35    -148.36          296.71  

Fixed effects coefficients (95% CIs):
    Name                      Estimate    SE          tStat      DF 
    '(Intercept)'               1.2233    0.096678     12.654    459
    'Region_MidAtl'           0.010192    0.052221    0.19518    459
    'Region_ENCentral'        0.051923    0.052221     0.9943    459
    'Region_WNCentral'         0.23687    0.052221     4.5359    459
    'Region_SAtl'             0.075481    0.052221     1.4454    459
    'Region_ESCentral'         0.33917    0.052221      6.495    459
    'Region_WSCentral'           0.069    0.052221     1.3213    459
    'Region_Mtn'              0.046673    0.052221    0.89377    459
    'Region_Pac'              -0.16013    0.052221    -3.0665    459


    pValue        Lower        Upper    
     1.085e-31       1.0334       1.4133
       0.84534    -0.092429      0.11281
        0.3206    -0.050698      0.15454
    7.3324e-06      0.13424      0.33949
       0.14902     -0.02714       0.1781
    2.1623e-10      0.23655      0.44179
       0.18705    -0.033621      0.17162
       0.37191    -0.055948      0.14929
     0.0022936     -0.26276    -0.057514

Random effects covariance parameters (95% CIs):
Group: Date (52 Levels)
    Name1                Name2                Type         Estimate    Lower 
    '(Intercept)'        '(Intercept)'        'std'        0.6443      0.5297


    Upper  
    0.78368

Group: Error
    Name             Estimate    Lower      Upper
    'Res Std'        0.26627     0.24878    0.285

p- значения 7.3324e-06 и 2.1623e-10 соответственно показывают, что фиксированные эффекты уровней гриппа в областях WNCentral и ESCentral существенно отличаются относительно уровней гриппа в области NE.

Пределы достоверности для стандартного отклонения термина случайных эффектов, σb, не включайте 0 (0.5297, 0.78368), который указывает, что термин случайных эффектов является значительным. Можно также протестировать значение условий случайных эффектов с помощью метода compare.

Ориентировочная стоимость наблюдения является суммой фиксированных эффектов и значения случайного эффекта на уровне группирующей переменной, соответствующем тому наблюдению. Например, предполагаемый лучше всего линейный несмещенный предиктор (BLUP) уровня гриппа для области WNCentral на неделе 10/9/2005

yˆWNCentral,10/9/2005=βˆ0+βˆ3I[WNCentral]+bˆ10/9/2005=1.2233+0.23687-0.1718=1.28837.

Это - подходящий условный ответ, поскольку он включает вклад в оценку и от фиксированных и от случайных эффектов. Можно вычислить это значение можно следующим образом.

beta = fixedEffects(lme);
[~,~,STATS] = randomEffects(lme); % Compute the random-effects statistics (STATS)
STATS.Level = nominal(STATS.Level);
y_hat = beta(1) + beta(4) + STATS.Estimate(STATS.Level=='10/9/2005')
y_hat = 1.2884

Можно просто отобразить подходящее значение с помощью метода fitted.

F = fitted(lme);
F(flu2.Date == '10/9/2005' & flu2.Region == 'WNCentral')
ans = 1.2884

Вычислите подходящий крайний ответ для области WNCentral на неделе 10/9/2005.

F = fitted(lme,'Conditional',false);
F(flu2.Date == '10/9/2005' & flu2.Region == 'WNCentral')
ans = 1.4602

Загрузите выборочные данные.

load carbig

Соответствуйте линейной модели смешанных эффектов для миль на галлон (MPG), с фиксированными эффектами для ускорения, лошадиной силы и цилиндров и некоррелированого случайного эффекта для прерывания и ускорения, сгруппированного модельным годом. Эта модель соответствует

MPGim=β0+β1Acci+β2HP+b0m+b1mAccim+εim,m=1,2,3,

с условиями случайных эффектов, имеющими следующие предшествующие дистрибутивы:

bm=(b0mb1m)N(0,(σ02σ0,1σ0,1σ12)),

где m представляет модельный год.

Во-первых, подготовьте матрицы проекта к подбору кривой линейной модели смешанных эффектов.

X = [ones(406,1) Acceleration Horsepower];
Z = [ones(406,1) Acceleration];
Model_Year = nominal(Model_Year);
G = Model_Year;

Теперь, соответствуйте модели с помощью fitlmematrix с заданными матрицами проекта и группирующими переменными. Используйте алгоритм оптимизации 'fminunc'.

lme = fitlmematrix(X,MPG,Z,G,'FixedEffectPredictors',....
{'Intercept','Acceleration','Horsepower'},'RandomEffectPredictors',...
{{'Intercept','Acceleration'}},'RandomEffectGroups',{'Model_Year'},...
'FitMethod','REML')
lme = 
Linear mixed-effects model fit by REML

Model information:
    Number of observations             392
    Fixed effects coefficients           3
    Random effects coefficients         26
    Covariance parameters                4

Formula:
    Linear Mixed Formula with 4 predictors.

Model fit statistics:
    AIC       BIC       LogLikelihood    Deviance
    2202.9    2230.7    -1094.5          2188.9  

Fixed effects coefficients (95% CIs):
    Name                  Estimate    SE           tStat      DF     pValue    
    'Intercept'             50.064       2.3176     21.602    389    1.4185e-68
    'Acceleration'        -0.57897      0.13843    -4.1825    389    3.5654e-05
    'Horsepower'          -0.16958    0.0073242    -23.153    389    3.5289e-75


    Lower       Upper   
      45.507       54.62
    -0.85112    -0.30681
    -0.18398    -0.15518

Random effects covariance parameters (95% CIs):
Group: Model_Year (13 Levels)
    Name1                 Name2                 Type          Estimate
    'Intercept'           'Intercept'           'std'            3.72 
    'Acceleration'        'Intercept'           'corr'        -0.8769 
    'Acceleration'        'Acceleration'        'std'          0.3593 


    Lower       Upper   
      1.5215      9.0954
    -0.98274    -0.33846
     0.19418     0.66483

Group: Error
    Name             Estimate    Lower     Upper 
    'Res Std'        3.6913      3.4331    3.9688

Фиксированное содействующее отображение эффектов включает оценку, стандартные погрешности (SE), и 95% пределов доверительного интервала (Lower и Upper). p- значения для (pValue) указывают, что все три коэффициента фиксированных эффектов являются значительными.

Доверительные интервалы для стандартных отклонений и корреляции между случайными эффектами для прерывания и ускорения не включают нули, следовательно они кажутся значительными. Используйте метод compare, чтобы протестировать на случайные эффекты.

Отобразите ковариационную матрицу предполагаемых коэффициентов фиксированных эффектов.

lme.CoefficientCovariance
ans = 3×3

    5.3711   -0.2809   -0.0126
   -0.2809    0.0192    0.0005
   -0.0126    0.0005    0.0001

Диагональные элементы показывают отклонения содействующих оценок фиксированных эффектов. Например, отклонение оценки прерывания 5.3711. Обратите внимание на то, что стандартные погрешности оценок являются квадратными корнями из отклонений. Например, стандартная погрешность прерывания 2.3176, который является sqrt(5.3711).

Недиагональные элементы показывают корреляцию между содействующими оценками фиксированных эффектов. Например, корреляция между прерыванием и ускорением –0.2809 и корреляция между ускорением, и лошадиная сила 0.0005.

Отобразите коэффициент детерминации для модели.

lme.Rsquared
ans = struct with fields:
    Ordinary: 0.7826
    Adjusted: 0.7815

Настроенное значение является значением R-squared, настроенным для количества предикторов в модели.

Больше о

развернуть все

Смотрите также

| |