Шумоподавление или сжатие с помощью пакетов вейвлета
[xd,treed,perf0,perfl2] = wpdencmp(x,sorh,n,wname,crit,par,keepapp)[___] = wpdencmp(tree,sorh,crit,par,keepapp)[ возвращает denoised или сжатую версию xd,treed,perf0,perfl2] = wpdencmp(x,sorh,n,wname,crit,par,keepapp)xd входных данных x, полученный пакетной содействующей пороговой обработкой вейвлета. wpdencmp также возвращает пакет вейвлета лучшее древовидное разложение treed xd (см. besttree для получения дополнительной информации), и L 2 энергетических очков восстановления и сжатия в процентах как perfl2 и perf0, соответственно.
[1] Antoniadis, A., и Г. Оппенхейм, вейвлеты редакторов и Статистика. Читайте лекции Примечаниям в Статистике. Нью-Йорк: Springer Verlag, 1995.
[2] Койфман, R. R. и М. Ф. Викераузер. “Основанные на энтропии Алгоритмы для Лучшего Базисного Выбора”. Транзакции IEEE на Теории информации. Издание 38, Номер 2, 1992, стр 713–718.
[3] DeVore, R. A. Б. Джейрт и Б. Дж. Лукир. “Сжатие изображения Посредством Кодирования Преобразования Вейвлета”. Транзакции IEEE на Теории информации. Издание 38, Номер 2, 1992, стр 719–746.
[4] Donoho, D. L. “Прогресс Анализа Вейвлета и WVD: Десятиминутный Тур”. Прогресс Анализа Вейвлета и Приложений (И. Мейер, и. Рок, редакторы). Джиф-сур-Иветт: Выпуски Frontières, 1993.
[5] Donoho, D. L. и я. М. Джонстон. “Идеальная Пространственная Адаптация Уменьшением Вейвлета”. Biometrika. Издание 81, 1994, стр 425–455.
[6] Donoho, D. L. i. М. Джонстон, Г. Керкьячариэн и Д. Пикар. “Уменьшение вейвлета: Asymptopia?” Журнал Королевского Статистического Общества, серий B. Издание 57, Номер 2, 1995, стр 301–369.
besttree | ddencmp | wden | wdencmp | wdenoise | wenergy | wentropy | wpbmpen | wpdec | wpdec2 | wthresh