detect

Обнаружьте объекты с помощью Быстрого детектора объектов R-CNN, сконфигурированного для монокулярной камеры

Описание

bboxes = detect(detector,I) обнаруживает объекты в изображении I с помощью Быстрого R-CNN (области со сверточными нейронными сетями) детектор объектов сконфигурирован для монокулярной камеры. Местоположения обнаруженных объектов возвращены как набор ограничительных рамок.

При использовании этой функции, использования графического процессора CUDA®-enabled NVIDIA® с вычислить возможностью 3,0 или выше настоятельно рекомендован. Графический процессор значительно уменьшает время вычисления. Использование графического процессора требует Parallel Computing Toolbox™.

[bboxes,scores] = detect(detector,I) также возвращает музыку уверенности обнаружения к каждой ограничительной рамке.

[___,labels] = detect(detector,I) также возвращает категориальный массив меток, присвоенных ограничительным рамкам, с помощью любого из предыдущих синтаксисов. Метки, используемые в классах объектов, заданы во время обучения с помощью trainFastRCNNObjectDetector функция.

[___] = detect(___,roi) обнаруживает объекты в прямоугольной поисковой области, заданной roi.

detectionResults = detect(detector,ds) обнаруживает объекты в серии изображений, возвращенных read функция входного datastore.

[___] = detect(___,Name,Value) задает опции с помощью одного или нескольких Name,Value парные аргументы. Например, detect(detector,I,'NumStongestRegions',1000) ограничивает количество самых сильных предложений по области к 1 000.

Входные параметры

свернуть все

Быстрый детектор объектов R-CNN сконфигурирован для монокулярной камеры, заданной как fastRCNNObjectDetectorMonoCamera объект. Чтобы создать этот объект, используйте configureDetectorMonoCamera функция с monoCamera возразите и обученный fastRCNNObjectDetector возразите как входные параметры.

Datastore, заданный как объект datastore, содержащий набор изображений. Каждое изображение должно быть шкалой полутонов, RGB или многоканальным изображением. Функциональные процессы только первый столбец datastore, который должен содержать изображения и должен быть массивами ячеек или таблицами с несколькими столбцами.

Введите изображение, заданное как действительное, неразреженное, изображение RGB или полутоновый.

Детектор чувствителен к области значений входного изображения. Поэтому гарантируйте, что входной диапазон образов похож на область значений изображений, используемых, чтобы обучить детектор. Например, если детектор был обучен на uint8 изображения, повторно масштабируйте это входное изображение к области значений [0, 255] при помощи im2uint8 или rescale функция. Размер этого входного изображения должен быть сопоставим с размерами изображений, используемых в обучении. Если эти размеры очень отличаются, детектор испытывает затруднения при обнаружении объектов, потому что шкала объектов во входном изображении отличается от шкалы объектов, которые детектор был обучен идентифицировать. Рассмотрите, использовали ли вы SmallestImageDimension свойство во время обучения изменить размер учебных изображений.

Типы данных: uint8 | uint16 | int16 | double | single | logical

Поисковая необходимая область, заданная как [x y width height] вектор. Вектор задает левый верхний угол и размер области в пикселях.

Аргументы в виде пар имя-значение

Задайте дополнительные разделенные запятой пары Name,Value аргументы. Name имя аргумента и Value соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.

Пример: 'NumStongestRegions',1000

Максимальное количество самых сильных предложений по области, заданных как разделенная запятой пара, состоящая из 'NumStrongestRegions' и положительное целое число. Уменьшайте это значение, чтобы ускорить время вычислений за счет точности обнаружения. Чтобы использовать все предложения по области, задайте это значение как Inf.

Выберите самую сильную ограничительную рамку для каждого обнаруженного объекта, заданного как разделенная запятой пара, состоящая из 'SelectStrongest' и любой true или false.

  • true — Возвратите самую сильную ограничительную рамку на объект. Выбрать эти поля, detect вызывает selectStrongestBboxMulticlass функция, которая использует немаксимальное подавление, чтобы устранить перекрывающиеся ограничительные рамки на основе их баллов уверенности.

    Например:

     selectStrongestBboxMulticlass(bbox,scores, ...
                'RatioType','Min', ...
                'OverlapThreshold',0.5);

  • false — Возвратите все обнаруженные ограничительные рамки. Можно затем создать собственную операцию, чтобы устранить перекрывающиеся ограничительные рамки.

Минимальный размер области, который содержит обнаруженный объект, заданный как разделенная запятой пара, состоящая из 'MinSize' и [height width] вектор. Модули находятся в пикселях.

По умолчанию, MinSize самый маленький объект что обученный detector может обнаружить.

Максимальный размер области, который содержит обнаруженный объект, заданный как разделенная запятой пара, состоящая из 'MaxSize' и [height width] вектор. Модули находятся в пикселях.

Чтобы уменьшать время вычисления, установите это значение к известному максимальному размеру области для объектов, обнаруживаемых в изображении. По умолчанию, 'MaxSize' установлен в высоту и ширину входного изображения, I.

Минимальный пакетный размер, заданный как разделенная запятой пара, состоящая из 'MiniBatchSize' и скалярное значение. Используйте MiniBatchSize обработать большое количество изображений. Изображения сгруппированы в мини-пакеты и обработаны как пакет, чтобы повысить эффективность расчета. Увеличьте мини-пакетный размер, чтобы уменьшить время вычислений. Уменьшите размер, чтобы использовать меньше памяти.

Аппаратный ресурс, на котором можно запустить детектор, заданный как разделенная запятой пара, состоящая из 'ExecutionEnvironment' и 'auto', 'gpu', или 'cpu'.

  • 'auto' — Используйте графический процессор, если это доступно. В противном случае используйте центральный процессор.

  • 'gpu' — Используйте графический процессор. Чтобы использовать графический процессор, у вас должен быть Parallel Computing Toolbox, и CUDA включил NVIDIA графический процессор с вычислить возможностью 3,0 или выше. Если подходящий графический процессор не доступен, функция возвращает ошибку.

  • 'cpu' — Используйте центральный процессор.

Выходные аргументы

свернуть все

Местоположение объектов обнаружило во входном изображении, возвращенном как M-by-4 матрица, где M является количеством ограничительных рамок. Каждая строка bboxes содержит четырехэлементный вектор формы [x y width height]. Этот вектор задает левый верхний угол и размер той соответствующей ограничительной рамки в пикселях.

Баллы уверенности обнаружения, возвращенные как M-by-1 вектор, где M является количеством ограничительных рамок. Более высокий счет указывает на более высокую уверенность в обнаружении.

Метки для ограничительных рамок, возвращенных как M-by-1 категориальный массив меток M. Вы задаете имена классов, используемые, чтобы пометить объекты, когда вы обучаете вход detector.

Результаты обнаружения, возвращенные как таблица с 3 столбцами с именами переменных, Boxes, Scores и Labels. Столбец Boxes содержит M-by-4 матрицы ограничительных рамок M для объектов, найденных в изображении. Каждая строка содержит ограничительную рамку как вектор с 4 элементами в формате [x, y, width, height]. Формат задает местоположение верхнего левого угла и размер в пикселях ограничительной рамки в соответствующем изображении.

Введенный в R2017a

Для просмотра документации необходимо авторизоваться на сайте