lyapunovExponent

Охарактеризуйте уровень разделения бесконечно мало близких траекторий

Описание

пример

lyapExp = lyapunovExponent(X,fs) оценивает экспоненту Ляпунова однородно произведенного сигнала временной области X использование частоты дискретизации fs. Используйте lyapunovExponent чтобы охарактеризовать уровень разделения бесконечно мало закрывают траектории в фазовом пространстве, чтобы отличить различные аттракторы. Экспонента Ляпунова полезна в определении количества уровня хаоса в системе, которая в свою очередь может использоваться, чтобы обнаружить потенциальные отказы.

пример

lyapExp = lyapunovExponent(X,fs,lag) оценивает экспоненту Ляпунова для lag с временной задержкой.

пример

lyapExp = lyapunovExponent(X,fs,[],dim) оценивает экспоненту Ляпунова для размерности встраивания dim.

пример

lyapExp = lyapunovExponent(X,fs,lag,dim) оценивает экспоненту Ляпунова для lag с временной задержкой и встраивание размерности dim.

пример

[lyapExp,estep,ldiv] = lyapunovExponent(___) оценивает экспоненту Ляпунова, шаг расширения и соответствующее логарифмическое расхождение однородно произведенного сигнала временной области X. Используйте шаг расширения estep и соответствующее логарифмическое расхождение ldiv для диагностики сигнала.

пример

___ = lyapunovExponent(___,Name,Value) оценивает экспоненту Ляпунова с дополнительными опциями, заданными одним или несколькими Name,Value парные аргументы.

пример

lyapunovExponent(___) без выходных аргументов создает среднее логарифмическое расхождение по сравнению с графиком шага расширения.

Используйте сгенерированный интерактивный график найти соответствующий ExpansionRange.

Примеры

свернуть все

В этом примере рассмотрите Аттрактор Лоренца, описывающий уникальный набор хаотических решений.

Загрузите набор данных и частоту дискретизации fs к рабочей области, и визуализируют Аттрактор Лоренца в 3-D.

load('lorenzAttractorExampleData.mat','data','fs');
plot3(data(:,1),data(:,2),data(:,3));

В данном примере используйте данные направления X Аттрактора Лоренца. Начиная с Lag неизвестно, оцените задержку с помощью phaseSpaceReconstruction. Установите размерность на 3, поскольку Аттрактор Лоренца является 3D системой. dim и lag параметры требуются, чтобы создавать логарифмическое расхождение по сравнению с графиком шага расширения.

xdata = data(:,1);
dim = 3;
[~,lag] = phaseSpaceReconstruction(xdata,[],dim)
lag = 10

Создайте среднее логарифмическое расхождение по сравнению с графиком шага расширения для Аттрактора Лоренца, с помощью lag значение получено на предыдущем шаге. Установите достаточно большую область значений расширения получать все шаги расширения.

eRange = 200;
lyapunovExponent(xdata,fs,lag,dim,'ExpansionRange',eRange)

Первая пунктирная, вертикальная зеленая линия (слева) указывает на минимальное количество шагов, используемых, чтобы оценить область значений расширения, в то время как вторая вертикальная зеленая линия (справа), представляет максимальное количество используемых шагов. Вместе, первые и вторые вертикальные линии представляют область значений расширения. Пунктирная красная линия указывает на линейную подходящую линию для данных в области значений расширения.

Чтобы вычислить самую большую экспоненту Ляпунова, сначала необходимо определить область значений расширения, необходимую для точной оценки.

В графике перетащите эти две пунктирных, вертикальных зеленых линии, чтобы лучше всего соответствовать линейной подходящей линии к исходной линии данных, чтобы получить область значений расширения: Kmin и Kmax .

Отметьте новые значения области значений расширения после перетаскивания двух вертикальных линий для соответствующей подгонки.

Поскольку диапазон расширения может только быть указан с помощью целых чисел, округления Kmin и Kmax к самому близкому целому числу. Найдите самую большую экспоненту Ляпунова Аттрактора Лоренца с помощью нового значения области значений расширения.

Kmin = 21;
Kmax = 161;
lyapExp = lyapunovExponent(xdata,fs,lag,dim,'ExpansionRange',[Kmin Kmax])
lyapExp = 1.6834

Отрицательная экспонента Ляпунова указывает на сходимость, в то время как положительные экспоненты Ляпунова демонстрируют расхождение и хаос. Величина lyapExp индикатор уровня сходимости или расхождения бесконечно мало близких траекторий.

Входные параметры

свернуть все

Однородно произведенный сигнал временной области, заданный как вектор, массив или расписание. Если X имеет несколько столбцов, lyapunovExponent вычисляет самую большую экспоненту Ляпунова путем обработки X как многомерный сигнал.

Если X задан как вектор-строка, lyapunovExponent обработки это как одномерный сигнал.

Частота дискретизации, заданная как скаляр. Уровень частоты дискретизации или выборки является средним количеством выборок, полученных за одну секунду.

Если fs не предоставляется, нормированная частота 2π используется для расчета экспонента Ляпунова. Если X задан как расписание, время выборки выведено из него.

Встраивание размерности, заданной как скаляр или вектор. dim эквивалентно 'Dimension'пара "имя-значение".

Задержка, заданная как скаляр или вектор. lag эквивалентно 'Lag'пара "имя-значение".

Аргументы в виде пар имя-значение

Задайте дополнительные разделенные запятой пары Name,Value аргументы. Name имя аргумента и Value соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.

Пример: …,'Dimension',3

Встраивание размерности, заданной как разделенная запятой пара, состоящая из 'Dimension'и или скаляр или вектор. Когда Dimension скаляр, каждый столбец в X восстановлен с помощью Dimension. Когда Dimension вектор, имеющий ту же длину как количество столбцов в X, размерность реконструкции для столбца i Dimension(i).

Задайте Dimension на основе размерности вашей системы, то есть, количества состояний. Для получения дополнительной информации о встраивании размерности смотрите phaseSpaceReconstruction.

Задержка реконструкции фазового пространства, заданной как разделенная запятой пара, состоящая из 'Lag'и или скаляр или вектор. Когда Lag скаляр, каждый столбец в X восстановлен с помощью Lag. Когда Lag вектор, имеющий ту же длину как количество столбцов в X, задержка реконструкции столбца i Lag(i).

Значение по умолчанию Lag 1.

Если задержка является слишком маленькой, случайный шум введен в данных. В отличие от этого, если задержка является слишком большой, восстановленные движущие силы не представляют истинную динамику временных рядов. Для получения дополнительной информации об оценке оптимальной задержки смотрите phaseSpaceReconstruction.

Средний период, заданный как разделенная запятой пара, состоящая из 'MinSeparation'и положительное скалярное целое число.

MinSeparation пороговое значение, используемое, чтобы найти самый близкий соседний i* для точки i оценить самую большую экспоненту Ляпунова.

Значение по умолчанию MinSeparation ceil(fs/max(meanfreq(X,fs))).

Область значений шагов расширения, заданных как разделенная запятой пара, состоящая из 'ExpansionRange'и или 1x2 положительный целочисленный массив или положительное скалярное целое число.

Минимальное и максимальное значение ExpansionRate используется, чтобы оценить, что локальный уровень расширения вычисляет экспоненту Ляпунова.

Если ExpansionRange задан как скалярный M, затем область значений собирается быть [1, M]. ExpansionRange может только быть задан с помощью положительных целых чисел, и значением по умолчанию является [1, 5].

Выходные аргументы

свернуть все

Самая большая экспонента Ляпунова, возвращенная как скаляр. lyapExp определяет количество уровня расхождения или сходимости близких траекторий в фазовом пространстве.

Отрицательная экспонента Ляпунова указывает на сходимость, в то время как положительные экспоненты Ляпунова демонстрируют расхождение и хаос. Величина lyapExp индикатор уровня сходимости или расхождения бесконечно мало близких траекторий.

Способность различить уровни расхождения в наборах данных полезна в области разработки, чтобы оценить отказ компонента путем изучения их вибрации и акустических сигналов, или предсказать, когда поставка опрокинулась бы на основе ее движения. [2][3]

Шаг расширения используется в оценке, возвращенной как массив. estep различие между максимальным и минимальным разделением области значений расширения в равное количество точек, заданных максимальным значением ExpansionRange.

Логарифмическое расхождение, возвращенное как массив с тем же размером как estep. Величина каждого значения в ldiv соответствует логарифмической сходимости или расхождению каждой точки в estep.

Алгоритмы

Экспонента Ляпунова вычисляется следующим образом:

  1. lyapunovExponent функция сначала генерирует задержанную реконструкцию Y1:N со встраиванием размерности m и задержка τ.

  2. Для точки i, программное обеспечение затем находит самую близкую соседнюю точку i*, который удовлетворяет mini*YiYi* таким образом, что |ii*|>MinSeparation, где MinSeparation, средний период, обратная величина средней частоты.

  3. Экспонента Ляпунова для целой области значений расширения вычисляется как,

    λ(i)=1Kmax +Kmin+1K=KminKmax 1K*dtlnYi+KYi*+KYiYi*

    где, Kmin и Kmax представляют ExpansionRangedt время выборки и ldiv=lnYi+KYi*+KYiYi*

  4. Одно значение для экспоненты Ляпунова затем вычисляется от более раннего шага с помощью polyfit команда как,

    lyapExp = полисоответствие([Kmin Kmax ],λ(i))

Ссылки

[1] Майкл Т. Розенштейн, Джеймс Дж. Коллинз, Карло Й. Де Лука. "Практический метод для вычисления самых больших экспонент Ляпунова от небольших наборов данных". Physica D 1993. Объем 65. Страницы 117-134.

[2] Caesarendra, Wahyu & Kosasih, P & Tieu, Kiet & Moodie, Крэйг. "Приложение нелинейного тематического исследования извлечения-признаков-A для низкоскоростного мониторинга состояния опорно-поворотного подшипника и прогноза". Международная конференция IEEE/ASME по вопросам Усовершенствованной Интеллектуальной Механотроники: Механотроника для Человеческого Благополучия, AIM 2013.1713-1718. 10.1109/AIM.2013.6584344.

[3] McCue, Leigh & W. Troesch, Армин. (2011). "Использование Экспонент Ляпунова, чтобы Предсказать Хаотические Движения Судна". Гидроаэромеханика и ее Приложения. 97. 415-432. 10.1007/978-94-007-1482-3_23.

Введенный в R2018a