constraintJointBounds

Создайте ограничения на положения соединений модели робота

Описание

constraintJointBounds объект описывает ограничение на объединенные положения дерева твердого тела. Этому ограничению удовлетворяют, поддерживает ли вектор настройки робота все объединенные положения в Bounds заданный. Вектор настройки содержит положения для всех нефиксированных соединений в rigidBodyTree объект.

Ограничительные объекты используются в generalizedInverseKinematics объекты задать несколько кинематических ограничений на робота.

Для примера, который использует несколько ограничительных объектов, см. План Достигающая Траектория С Несколькими Кинематическими Ограничениями.

Создание

Описание

пример

jointConst = constraintJointBounds(robot) возвращается объединенное положение ограничивает объект, который представляет ограничение на вектор настройки из модели робота, заданной robot.

jointConst = constraintJointBounds(robot,Name,Value) возвращается объединенное положение ограничивает объект с каждым заданным набором имени свойства к заданному значению одним или несколькими Name,Value парные аргументы.

Входные параметры

развернуть все

Модель дерева твердого тела в виде rigidBodyTree объект.

Свойства

развернуть все

Границы на векторе настройки в виде n-by-2 матрица. Каждая строка массива соответствует нефиксированному соединению на модели робота и дает минимальное и максимальное положение для того соединения. По умолчанию границы установлены на основе PositionLimits свойство каждого rigidBodyJoint объект во входной модели дерева твердого тела, robot.

Веса ограничения в виде n - вектор элемента, где каждый элемент соответствует строке в Bounds и дает относительные веса для каждого связанного. Значением по умолчанию является вектор из единиц, чтобы дать равный вес всем объединенным положениям. Эти веса используются с Weights свойство всех ограничений задано в generalizedInverseKinematics правильно сбалансировать каждое ограничение

Примеры

свернуть все

В этом примере показано, как использовать обобщенную инверсную кинематику, чтобы запланировать объединенную пространственную траекторию автоматизированный манипулятор. Это комбинирует несколько ограничений, чтобы сгенерировать траекторию, которая ведет механизм захвата к опоре чашки на таблицу. Эти ограничения гарантируют, что механизм захвата приближается к чашке в прямой линии и что механизм захвата остается на безопасном расстоянии от таблицы, не требуя, чтобы положения механизма захвата были определены заранее.

Настройте модель робота

Этот пример использует модель LBR KUKA iiwa, 7 манипуляторов робота степени свободы. importrobot генерирует a rigidBodyTree модель из описания сохранена в файле Объединенного формата описания робота (URDF).

lbr = importrobot('iiwa14.urdf'); % 14 kg payload version
lbr.DataFormat = 'row';
gripper = 'iiwa_link_ee_kuka';

Задайте размерности для чашки.

cupHeight = 0.2;
cupRadius = 0.05;
cupPosition = [-0.5, 0.5, cupHeight/2];

Добавьте фиксированное тело в модель робота представление центра чашки.

body = rigidBody('cupFrame');
setFixedTransform(body.Joint, trvec2tform(cupPosition))
addBody(lbr, body, lbr.BaseName);

Опишите задачу планирования

Цель этого примера состоит в том, чтобы сгенерировать последовательность настроек робота, которые удовлетворяют следующим критериям:

  • Запустите в домашней настройке

  • Никакие резкие изменения в настройке робота

  • Сохраните механизм захвата на по крайней мере 5 см выше "таблицы" (z = 0)

  • Механизм захвата должен быть выровнен с чашкой, когда это приближается

  • Закончите с механизмом захвата в 5 см от центра чашки

Этот пример использует ограничительные объекты сгенерировать настройки робота, которые удовлетворяют этим критериям. Сгенерированная траектория состоит из пяти настроек waypoints. Первый waypoint, q0, установлен как домашняя настройка. Предварительно выделите остальную часть настроек в qWaypoints использование repmat.

numWaypoints = 5;
q0 = homeConfiguration(lbr);
qWaypoints = repmat(q0, numWaypoints, 1);

Создайте a generalizedInverseKinematics решатель, который принимает следующие ограничительные входные параметры:

  • Декартовы границы - Пределы высота механизма захвата

  • Цель положения - Задает положение чашки относительно механизма захвата.

  • Ограничение стремления - Выравнивает механизм захвата с осью чашки

  • Цель ориентации - Обеспечивает фиксированную ориентацию для механизма захвата при приближении к чашке

  • Объединенные границы положения - Пределы изменение в объединенных положениях между waypoints.

gik = generalizedInverseKinematics('RigidBodyTree', lbr, ...
    'ConstraintInputs', {'cartesian','position','aiming','orientation','joint'})
gik = 
  generalizedInverseKinematics with properties:

      NumConstraints: 5
    ConstraintInputs: {1x5 cell}
       RigidBodyTree: [1x1 rigidBodyTree]
     SolverAlgorithm: 'BFGSGradientProjection'
    SolverParameters: [1x1 struct]

Создайте ограничительные объекты

Создайте ограничительные объекты, которые передаются как входные параметры решателю. Они возражают, содержат параметры, необходимые для каждого ограничения. Измените эти параметры между вызовами решателя по мере необходимости.

Создайте Декартово ограничение границ, которое требует, чтобы механизм захвата был на по крайней мере 5 см выше таблицы (отрицательное z направление). Все другие значения даны как inf или -inf.

heightAboveTable = constraintCartesianBounds(gripper);
heightAboveTable.Bounds = [-inf, inf; ...
                           -inf, inf; ...
                           0.05, inf]
heightAboveTable = 
  constraintCartesianBounds with properties:

        EndEffector: 'iiwa_link_ee_kuka'
      ReferenceBody: ''
    TargetTransform: [4x4 double]
             Bounds: [3x2 double]
            Weights: [1 1 1]

Создайте ограничение на положение чашки относительно механизма захвата с допуском 5 мм.

distanceFromCup = constraintPositionTarget('cupFrame');
distanceFromCup.ReferenceBody = gripper;
distanceFromCup.PositionTolerance = 0.005
distanceFromCup = 
  constraintPositionTarget with properties:

          EndEffector: 'cupFrame'
        ReferenceBody: 'iiwa_link_ee_kuka'
       TargetPosition: [0 0 0]
    PositionTolerance: 0.0050
              Weights: 1

Создайте ограничение стремления, которое требует оси z iiwa_link_ee структурируйте, чтобы быть приблизительно вертикальными путем размещения цели далеко выше робота. iiwa_link_ee система координат ориентирована таким образом, что это ограничение выравнивает механизм захвата с осью чашки.

alignWithCup = constraintAiming('iiwa_link_ee');
alignWithCup.TargetPoint = [0, 0, 100]
alignWithCup = 
  constraintAiming with properties:

         EndEffector: 'iiwa_link_ee'
       ReferenceBody: ''
         TargetPoint: [0 0 100]
    AngularTolerance: 0
             Weights: 1

Создайте объединенное ограничение границ положения. Установите Bounds свойство этого на основе ограничений на предыдущей настройке, чтобы ограничить изменение в объединенных положениях.

limitJointChange = constraintJointBounds(lbr)
limitJointChange = 
  constraintJointBounds with properties:

     Bounds: [7x2 double]
    Weights: [1 1 1 1 1 1 1]

Создайте ограничение ориентации для механизма захвата с допуском одной степени. Это ограничение требует, чтобы ориентация механизма захвата совпадала со значением, заданным TargetOrientation свойство. Используйте это ограничение, чтобы зафиксировать ориентацию механизма захвата во время итогового подхода к чашке.

fixOrientation = constraintOrientationTarget(gripper);
fixOrientation.OrientationTolerance = deg2rad(1)
fixOrientation = 
  constraintOrientationTarget with properties:

             EndEffector: 'iiwa_link_ee_kuka'
           ReferenceBody: ''
       TargetOrientation: [1 0 0 0]
    OrientationTolerance: 0.0175
                 Weights: 1

Найдите настройку, которая указывает на Кубок

Эта настройка должна поместить механизм захвата на расстоянии от чашки, так, чтобы итоговый подход мог быть сделан с механизмом захвата, правильно выровненным.

intermediateDistance = 0.3;

Ограничительные объекты имеют Weights свойство, которое определяет как обработки решателя конфликтные ограничения. Обнуление весов ограничения отключает ограничение. Для этой настройки отключите объединенные границы положения и ограничение ориентации.

limitJointChange.Weights = zeros(size(limitJointChange.Weights));
fixOrientation.Weights = 0;

Установите целевое положение для чашки в системе координат механизма захвата. Чашка должна лечь на ось z механизма захвата на заданном расстоянии.

distanceFromCup.TargetPosition = [0,0,intermediateDistance];

Решите для настройки робота, которая удовлетворяет входным ограничениям с помощью gik решатель. Необходимо задать все входные ограничения. Установите ту настройку как второй waypoint.

[qWaypoints(2,:),solutionInfo] = gik(q0, heightAboveTable, ...
                       distanceFromCup, alignWithCup, fixOrientation, ...
                       limitJointChange);

Найдите настройки, которые перемещают механизм захвата в Кубок вдоль прямой линии

Повторно включите объединенное связанное положение и ограничения ориентации.

limitJointChange.Weights = ones(size(limitJointChange.Weights));
fixOrientation.Weights = 1;

Отключите выровнять с чашкой ограничение, когда ограничение ориентации сокращает его.

alignWithCup.Weights = 0;

Установите ограничение ориентации содержать ориентацию на основе предыдущей настройки (qWaypoints(2,:)). Получите преобразование от механизма захвата до основы модели робота. Преобразуйте гомогенное преобразование в кватернион.

fixOrientation.TargetOrientation = ...
    tform2quat(getTransform(lbr,qWaypoints(2,:),gripper));

Задайте расстояние между чашкой и механизмом захвата для каждого waypoint

finalDistanceFromCup = 0.05;
distanceFromCupValues = linspace(intermediateDistance, finalDistanceFromCup, numWaypoints-1);

Задайте максимальное позволенное изменение в объединенных положениях между каждым waypoint.

maxJointChange = deg2rad(10);

Вызовите решатель для каждого остающегося waypoint.

for k = 3:numWaypoints
    % Update the target position.
    distanceFromCup.TargetPosition(3) = distanceFromCupValues(k-1);
    % Restrict the joint positions to lie close to their previous values.
    limitJointChange.Bounds = [qWaypoints(k-1,:)' - maxJointChange, ...
                               qWaypoints(k-1,:)' + maxJointChange];
    % Solve for a configuration and add it to the waypoints array.
    [qWaypoints(k,:),solutionInfo] = gik(qWaypoints(k-1,:), ...
                                         heightAboveTable, ...
                                         distanceFromCup, alignWithCup, ...
                                         fixOrientation, limitJointChange);
end

Визуализируйте сгенерированную траекторию

Интерполируйте между waypoints, чтобы сгенерировать сглаженную траекторию. Использование pchip избегать перерегулирований, которые могут нарушить объединенные пределы робота.

framerate = 15;
r = rateControl(framerate);
tFinal = 10;
tWaypoints = [0,linspace(tFinal/2,tFinal,size(qWaypoints,1)-1)];
numFrames = tFinal*framerate;
qInterp = pchip(tWaypoints,qWaypoints',linspace(0,tFinal,numFrames))';

Вычислите положение механизма захвата для каждой интерполированной настройки.

gripperPosition = zeros(numFrames,3);
for k = 1:numFrames
    gripperPosition(k,:) = tform2trvec(getTransform(lbr,qInterp(k,:), ...
                                                    gripper));
end

Покажите робота в его начальной настройке наряду с таблицей и чашкой

figure;
show(lbr, qWaypoints(1,:), 'PreservePlot', false);
hold on
exampleHelperPlotCupAndTable(cupHeight, cupRadius, cupPosition);
p = plot3(gripperPosition(1,1), gripperPosition(1,2), gripperPosition(1,3));

Анимируйте манипулятор и постройте положение механизма захвата.

hold on
for k = 1:size(qInterp,1)
    show(lbr, qInterp(k,:), 'PreservePlot', false);
    p.XData(k) = gripperPosition(k,1);
    p.YData(k) = gripperPosition(k,2);
    p.ZData(k) = gripperPosition(k,3);
    waitfor(r);
end
hold off

Если вы хотите сохранить сгенерированные настройки в MAT-файл для дальнейшего использования, выполните следующее:

>> save('lbr_trajectory.mat', 'tWaypoints', 'qWaypoints');

Вопросы совместимости

развернуть все

Изменение поведения в будущем релизе

Расширенные возможности

Генерация кода C/C++
Генерация кода C и C++ с помощью MATLAB® Coder™.

Введенный в R2017a