predictLifetime

Вычислите совокупный пожизненный PD, крайний PD и вероятность выживания

Описание

пример

LifeTimePredictedPD = predictLifetime(pdModel,data) вычисляет совокупную пожизненную вероятность значения по умолчанию (PD), крайний PD и вероятность выживания.

пример

LifeTimePredictedPD = predictLifetime(___,Name,Value) задает опции с помощью одного или нескольких аргументов пары "имя-значение" в дополнение к входным параметрам в предыдущем синтаксисе.

Примеры

свернуть все

В этом примере показано, как использовать fitLifetimePDModel соответствовать данным Probit модель и затем предсказывает пожизненную вероятность значения по умолчанию (PD).

Загрузка данных

Загрузите данные о кредитном портфеле.

load RetailCreditPanelData.mat
disp(head(data))
    ID    ScoreGroup    YOB    Default    Year
    __    __________    ___    _______    ____

    1      Low Risk      1        0       1997
    1      Low Risk      2        0       1998
    1      Low Risk      3        0       1999
    1      Low Risk      4        0       2000
    1      Low Risk      5        0       2001
    1      Low Risk      6        0       2002
    1      Low Risk      7        0       2003
    1      Low Risk      8        0       2004
disp(head(dataMacro))
    Year     GDP     Market
    ____    _____    ______

    1997     2.72      7.61
    1998     3.57     26.24
    1999     2.86      18.1
    2000     2.43      3.19
    2001     1.26    -10.51
    2002    -0.59    -22.95
    2003     0.63      2.78
    2004     1.85      9.48

Соедините два компонента данных в один набор данных.

data = join(data,dataMacro);
disp(head(data))
    ID    ScoreGroup    YOB    Default    Year     GDP     Market
    __    __________    ___    _______    ____    _____    ______

    1      Low Risk      1        0       1997     2.72      7.61
    1      Low Risk      2        0       1998     3.57     26.24
    1      Low Risk      3        0       1999     2.86      18.1
    1      Low Risk      4        0       2000     2.43      3.19
    1      Low Risk      5        0       2001     1.26    -10.51
    1      Low Risk      6        0       2002    -0.59    -22.95
    1      Low Risk      7        0       2003     0.63      2.78
    1      Low Risk      8        0       2004     1.85      9.48

Данные о разделе

Разделите данные на обучение и протестируйте разделы.

nIDs = max(data.ID);
uniqueIDs = unique(data.ID);

rng('default'); % for reproducibility
c = cvpartition(nIDs,'HoldOut',0.4);

TrainIDInd = training(c);
TestIDInd = test(c);

TrainDataInd = ismember(data.ID,uniqueIDs(TrainIDInd));
TestDataInd = ismember(data.ID,uniqueIDs(TestIDInd));

Создайте Probit Пожизненная модель PD

Используйте fitLifetimePDModel создать Probit модель с помощью обучающих данных.

pdModel = fitLifetimePDModel(data(TrainDataInd,:),"Probit",...
    'AgeVar','YOB',...
    'IDVar','ID',...
    'LoanVars','ScoreGroup',...
    'MacroVars',{'GDP','Market'},...
    'ResponseVar','Default');
disp(pdModel)
  Probit with properties:

        ModelID: "Probit"
    Description: ""
          Model: [1x1 classreg.regr.CompactGeneralizedLinearModel]
          IDVar: "ID"
         AgeVar: "YOB"
       LoanVars: "ScoreGroup"
      MacroVars: ["GDP"    "Market"]
    ResponseVar: "Default"

Отобразите базовую модель.

disp(pdModel.Model)
Compact generalized linear regression model:
    probit(Default) ~ 1 + ScoreGroup + YOB + GDP + Market
    Distribution = Binomial

Estimated Coefficients:
                               Estimate        SE         tStat       pValue   
                              __________    _________    _______    ___________

    (Intercept)                  -1.6267      0.03811    -42.685              0
    ScoreGroup_Medium Risk      -0.26542      0.01419    -18.704     4.5503e-78
    ScoreGroup_Low Risk         -0.46794     0.016364    -28.595     7.775e-180
    YOB                         -0.11421    0.0049724    -22.969    9.6208e-117
    GDP                        -0.041537     0.014807    -2.8052      0.0050291
    Market                    -0.0029609    0.0010618    -2.7885      0.0052954


388097 observations, 388091 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.85e+03, p-value = 0

Предскажите пожизненный PD на обучении и тестовых данных

Используйте predictLifetime функция, чтобы получить пожизненные ФУНТЫ на обучении или тестовых данных. Чтобы получить условные ФУНТЫ, используйте predict функция. Для проверки допустимости модели используйте modelDiscrimination и modelAccuracy функции на обучении или тестовых данных.

DataSetChoice = "Testing";
if DataSetChoice =="Training"
    Ind = TrainDataInd;
else
    Ind = TestDataInd;
end

% Predict lifetime PD
PD = predictLifetime (pdModel, данные (Ind, :));
голова (данные (Ind, :))
ans=8×7 table
    ID    ScoreGroup     YOB    Default    Year     GDP     Market
    __    ___________    ___    _______    ____    _____    ______

    2     Medium Risk     1        0       1997     2.72      7.61
    2     Medium Risk     2        0       1998     3.57     26.24
    2     Medium Risk     3        0       1999     2.86      18.1
    2     Medium Risk     4        0       2000     2.43      3.19
    2     Medium Risk     5        0       2001     1.26    -10.51
    2     Medium Risk     6        0       2002    -0.59    -22.95
    2     Medium Risk     7        0       2003     0.63      2.78
    2     Medium Risk     8        0       2004     1.85      9.48

Предскажите пожизненный PD на новых данных

Пожизненные модели PD используются, чтобы сделать предсказания по существующим кредитам. predictLifetime функция требует спроектированных значений и для ссуды и для макро-предикторов для остатка от срока кредита.

DataPredictLifetime.mat файл содержит проекции для двух кредитов и также для макро-переменных. Одной ссуде три года в конце 2 019 со временем жизни 10 лет, и другой ссуде шесть лет со временем жизни 10 лет. ScoreGroup является постоянным, и значения возраста являются инкрементными. Для макро-переменных прогнозы для макро-предикторов должны охватить самое долгое время жизни в портфеле.

load DataPredictLifetime.mat

disp(LoanData)
     ID      ScoreGroup      YOB    Year
    ____    _____________    ___    ____

    1304    "Medium Risk"     4     2020
    1304    "Medium Risk"     5     2021
    1304    "Medium Risk"     6     2022
    1304    "Medium Risk"     7     2023
    1304    "Medium Risk"     8     2024
    1304    "Medium Risk"     9     2025
    1304    "Medium Risk"    10     2026
    2067    "Low Risk"        7     2020
    2067    "Low Risk"        8     2021
    2067    "Low Risk"        9     2022
    2067    "Low Risk"       10     2023
disp(MacroScenario)
    Year    GDP    Market
    ____    ___    ______

    2020    1.1     4.5  
    2021    0.9     1.5  
    2022    1.2       5  
    2023    1.4     5.5  
    2024    1.6       6  
    2025    1.8     6.5  
    2026    1.8     6.5  
    2027    1.8     6.5  
LifetimeData = join(LoanData,MacroScenario);
disp(LifetimeData)
     ID      ScoreGroup      YOB    Year    GDP    Market
    ____    _____________    ___    ____    ___    ______

    1304    "Medium Risk"     4     2020    1.1     4.5  
    1304    "Medium Risk"     5     2021    0.9     1.5  
    1304    "Medium Risk"     6     2022    1.2       5  
    1304    "Medium Risk"     7     2023    1.4     5.5  
    1304    "Medium Risk"     8     2024    1.6       6  
    1304    "Medium Risk"     9     2025    1.8     6.5  
    1304    "Medium Risk"    10     2026    1.8     6.5  
    2067    "Low Risk"        7     2020    1.1     4.5  
    2067    "Low Risk"        8     2021    0.9     1.5  
    2067    "Low Risk"        9     2022    1.2       5  
    2067    "Low Risk"       10     2023    1.4     5.5  

Предскажите пожизненные ФУНТЫ и сохраните выход как новый столбец таблицы для удобства.

LifetimeData.PredictedPD = predictLifetime(pdModel,LifetimeData);
disp(LifetimeData)
     ID      ScoreGroup      YOB    Year    GDP    Market    PredictedPD
    ____    _____________    ___    ____    ___    ______    ___________

    1304    "Medium Risk"     4     2020    1.1     4.5       0.0080202 
    1304    "Medium Risk"     5     2021    0.9     1.5        0.014093 
    1304    "Medium Risk"     6     2022    1.2       5        0.018156 
    1304    "Medium Risk"     7     2023    1.4     5.5        0.020941 
    1304    "Medium Risk"     8     2024    1.6       6        0.022827 
    1304    "Medium Risk"     9     2025    1.8     6.5        0.024086 
    1304    "Medium Risk"    10     2026    1.8     6.5        0.024945 
    2067    "Low Risk"        7     2020    1.1     4.5       0.0015728 
    2067    "Low Risk"        8     2021    0.9     1.5       0.0027146 
    2067    "Low Risk"        9     2022    1.2       5        0.003431 
    2067    "Low Risk"       10     2023    1.4     5.5       0.0038939 

Визуализируйте предсказанный пожизненный PD для компании.

CompanyIDChoice = "1304";
CompanyID = str2double (CompanyIDChoice);
IndPlot = LifetimeData.ID == CompanyID;
график (LifetimeData.YOB(IndPlot), LifetimeData.PredictedPD(IndPlot))
сетка on
xlabel'YOB')
xticks (LifetimeData.YOB(IndPlot))
yLabel 'Lifetime PD')
заголовок (strcat ("Company ", CompanyIDChoice))

Figure contains an axes. The axes with title Company 1304 contains an object of type line.

Входные параметры

свернуть все

Вероятность модели по умолчанию в виде Logistic или Probit возразите ранее созданному использованию fitLifetimePDModel.

Типы данных: object

Пожизненные данные в виде NumRows- NumCols таблица со спроектированными значениями предиктора, чтобы сделать пожизненные предсказания. Имена предиктора и типы данных должны быть сопоставимы с базовой моделью. IDVar свойство pdModel вход используется, чтобы идентифицировать столбец, содержащий Значения идентификаторов в таблице, и идентификаторы используются, чтобы идентифицировать строки, соответствующие различным идентификаторам и сделать пожизненные предсказания для каждого ID.

Типы данных: table

Аргументы в виде пар имя-значение

Задайте дополнительные разделенные запятой пары Name,Value аргументы. Name имя аргумента и Value соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.

Пример: LifetimeData = predictLifetime(pdModel,Data,'ProbabilityType','survival')

Тип вероятности в виде разделенной запятой пары, состоящей из 'ProbabilityType' и вектор символов или строка.

Типы данных: char | string

Выходные аргументы

свернуть все

Предсказанные пожизненные значения PD, возвращенные как NumRows- 1 числовой вектор.

Больше о

свернуть все

Пожизненный PD

Lifetime PD является вероятностью стандартного события за время жизни финансового актива.

Пожизненный PD обычно относится к совокупной вероятности по умолчанию, данной

PDcumulative(t)=P{Tt}

где T является временем, чтобы принять значение по умолчанию.

Например, предсказанное время жизни, совокупный PD в течение второго года является вероятностью что значения по умолчанию заемщика любое время между теперь и два года с этого времени.

Тесно связанной концепцией, используемой для расчета пожизненной Ожидаемой потери кредита (ECL), является marginal PD, данный

PDmarginal=PDcumulative(t)PDcumulative(t1)

Тесно связанной вероятностью является survival probability, который является дополнением интегральной вероятности и сообщается как

S(t)=P{T>1}=1PDcumulative(t)

Следующая рекурсивная формула показывает отношение между условными ФУНТАМИ и вероятностью выживания:

S(0)=1S(1)=S(0)(1PDcond(1))...S(t)=S(t1)(1PDcond(t))

predictLifetime вызовы функции predict функция, чтобы получить условный PD и затем преобразует его в выживание, крайний или пожизненный совокупный PD с помощью предыдущих формул.

Ссылки

[1] Baesens, Барт, Дэниел Роеш и Харальд Шойле. Аналитика кредитного риска: техники измерений, приложения и примеры в SAS. Вайли, 2016.

[2] Беллини, Тициано. МСФО 9 и моделирование кредитного риска CECL и валидация: практическое руководство с примерами работало в R и SAS. Сан-Диего, CA: Elsevier, 2019.

[3] Breeden, Джозеф. Проживание с CECL: словарь моделирования. Санта-Фе, NM: наделенный даром предвидения LLC моделей, 2018.

Введенный в R2020b
Для просмотра документации необходимо авторизоваться на сайте