Создайте Probit
объект модели для пожизненной вероятности значения по умолчанию
Создайте и анализируйте Probit
объект модели, чтобы вычислить пожизненную вероятность значения по умолчанию (PD) с помощью этого рабочего процесса:
Использование fitLifetimePDModel
создать Probit
объект модели.
Использование predict
предсказать условный PD и predictLifetime
предсказать пожизненный PD.
Использование modelDiscrimination
возвратить данные ROC и AUROC. Можно построить использование результатов modelDiscriminationPlot
.
Использование modelAccuracy
возвратить RMSE наблюдаемых и предсказанных данных о PD. Можно построить использование результатов modelAccuracyPlot
.
создает ProbitPDModel
= fitLifetimePDModel(data
,ModelType
)Probit
Объект модели PD.
Если вы не указываете переменную информацию для IDVar
, AgeVar
, LoanVars
, MacroVars
, и ResponseVar
то:
IDVar
установлен в первый столбец в data
входной параметр.
LoanVars
набор должен включать все столбцы от второго до предпоследних столбцов data
входной параметр.
ResponseVar
установлен в последний столбец в data
входной параметр.
задает опции с помощью одного или нескольких аргументов пары "имя-значение" в дополнение к входным параметрам в предыдущем синтаксисе. Дополнительные аргументы пары "имя-значение" устанавливают свойства объекта модели. Например, ProbitPDModel
= fitLifetimePDModel(___,Name,Value
)ProbitPDModel = fitLifetimePDModel(data(TrainDataInd,:),"Probit",'ModelID',"Probit_A",'Descripion',"Probit_model",'AgeVar',"YOB",'IDVar',"ID",'LoanVars',"ScoreGroup','MacroVars',{'GDP','Market'},'ResponseVar',"Default")
создает Probit
объект модели.
predict | Вычислите условный PD |
predictLifetime | Вычислите совокупный пожизненный PD, крайний PD и вероятность выживания |
modelDiscrimination | Вычислите данные ROC и AUROC |
modelAccuracy | Вычислите RMSE предсказанных и наблюдаемых ФУНТОВ на сгруппированных данных |
modelDiscriminationPlot | Постройте кривую ROC |
modelAccuracyPlot | Постройте наблюдаемые уровни по умолчанию по сравнению с предсказанными ФУНТАМИ на сгруппированных данных |
[1] Baesens, Барт, Дэниел Роеш и Харальд Шойле. Аналитика кредитного риска: техники измерений, приложения и примеры в SAS. Вайли, 2016.
[2] Беллини, Тициано. МСФО 9 и моделирование кредитного риска CECL и валидация: практическое руководство с примерами работало в R и SAS. Сан-Диего, CA: Elsevier, 2019.
[3] Breeden, Джозеф. Проживание с CECL: словарь моделирования. Санта-Фе, NM: наделенный даром предвидения LLC моделей, 2018.