Возвращаемые точки на предиктор на интервал
возвращает таблицу точек для всех интервалов всех переменных предиктора, используемых в PointsInfo = displaypoints(sc)creditscorecard объект после того, как линейная логистическая регрессионая модель подходит с помощью fitmodel к данным о весе доказательств. The PointsInfo таблица отображает информацию об имени предиктора, метках интервала и соответствующих точках на интервал.
[ возвращает таблицу точек для всех интервалов всех переменных предиктора, используемых в PointsInfo,MinScore,MaxScore]
= displaypoints(sc)creditscorecard объект после того, как линейная логистическая регрессионая модель подобрана (fitmodel) к данным о весе доказательств. The PointsInfo таблица отображает информацию об имени предиктора, метках интервала и соответствующих точках на интервал и displaypoints. В сложение необязательный MinScore и MaxScore возвращаются значения.
[ задает опции, использующие один или несколько аргументы пары "имя-значение" в дополнение к входным параметрам в предыдущем синтаксисе. PointsInfo,MinScore,MaxScore]
= displaypoints(___,Name,Value)
В этом примере показано, как использовать displaypoints после того, как модель подобрана для вычисления немасштабированных точек на интервал, для заданного предиктора в creditscorecard модель.
Создайте creditscorecard объект с использованием CreditCardData.mat файл для загрузки data (использование набора данных из Refaat 2011). Используйте 'IDVar' аргумент в creditscorecard функция, указывающая, что 'CustID' содержит идентификационную информацию и не должен включаться в качестве переменной предиктора.
load CreditCardData sc = creditscorecard(data,'IDVar','CustID');
Выполните автоматическое раскладывание в интервал для всех предикторов.
sc = autobinning(sc);
Подбор линейной регрессионной модели с помощью параметров по умолчанию.
sc = fitmodel(sc);
1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769
Generalized linear regression model:
status ~ [Linear formula with 8 terms in 7 predictors]
Distribution = Binomial
Estimated Coefficients:
Estimate SE tStat pValue
________ ________ ______ __________
(Intercept) 0.70239 0.064001 10.975 5.0538e-28
CustAge 0.60833 0.24932 2.44 0.014687
ResStatus 1.377 0.65272 2.1097 0.034888
EmpStatus 0.88565 0.293 3.0227 0.0025055
CustIncome 0.70164 0.21844 3.2121 0.0013179
TmWBank 1.1074 0.23271 4.7589 1.9464e-06
OtherCC 1.0883 0.52912 2.0569 0.039696
AMBalance 1.045 0.32214 3.2439 0.0011792
1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16
Отобразите неограниченные точки для предикторов, сохраненных в модели аппроксимации.
PointsInfo = displaypoints(sc)
PointsInfo=37×3 table
Predictors Bin Points
______________ ________________ _________
{'CustAge' } {'[-Inf,33)' } -0.15894
{'CustAge' } {'[33,37)' } -0.14036
{'CustAge' } {'[37,40)' } -0.060323
{'CustAge' } {'[40,46)' } 0.046408
{'CustAge' } {'[46,48)' } 0.21445
{'CustAge' } {'[48,58)' } 0.23039
{'CustAge' } {'[58,Inf]' } 0.479
{'CustAge' } {'<missing>' } NaN
{'ResStatus' } {'Tenant' } -0.031252
{'ResStatus' } {'Home Owner' } 0.12696
{'ResStatus' } {'Other' } 0.37641
{'ResStatus' } {'<missing>' } NaN
{'EmpStatus' } {'Unknown' } -0.076317
{'EmpStatus' } {'Employed' } 0.31449
{'EmpStatus' } {'<missing>' } NaN
{'CustIncome'} {'[-Inf,29000)'} -0.45716
⋮
displaypoints всегда отображает '<missing>' интервал для каждого предиктора. Значение '<missing>' интервал происходит от начального creditscorecard объект и '<missing>' интервал установлено в NaN всякий раз, когда модель карты показателей не имеет информации о том, как назначить точки отсутствующим данным.
Чтобы сконфигурировать точки для '<missing>' интервал, необходимо использовать начальный creditscorecard объект. Для предикторов, которые имеют отсутствующие значения в наборе обучающих данных, точки для '<missing>' интервал оцениваются из данных, если 'BinMissingData' для аргумента пары "имя-значение" задано значение true использование creditscorecard. Когда 'BinMissingData' параметру задано значение false, или когда данные не содержат отсутствующих значений в наборе обучающих данных, используйте 'Missing' аргумент пары "имя-значение" в formatpoints чтобы указать, как назначить точки отсутствующим данным.
Создайте creditscorecard объект с использованием CreditCardData.mat файл для загрузки data с отсутствующими значениями.
load CreditCardData.mat
head(dataMissing,5)ans=5×11 table
CustID CustAge TmAtAddress ResStatus EmpStatus CustIncome TmWBank OtherCC AMBalance UtilRate status
______ _______ ___________ ___________ _________ __________ _______ _______ _________ ________ ______
1 53 62 <undefined> Unknown 50000 55 Yes 1055.9 0.22 0
2 61 22 Home Owner Employed 52000 25 Yes 1161.6 0.24 0
3 47 30 Tenant Employed 37000 61 No 877.23 0.29 0
4 NaN 75 Home Owner Employed 53000 20 Yes 157.37 0.08 0
5 68 56 Home Owner Employed 53000 14 Yes 561.84 0.11 0
fprintf('Number of rows: %d\n',height(dataMissing))Number of rows: 1200
fprintf('Number of missing values CustAge: %d\n',sum(ismissing(dataMissing.CustAge)))Number of missing values CustAge: 30
fprintf('Number of missing values ResStatus: %d\n',sum(ismissing(dataMissing.ResStatus)))Number of missing values ResStatus: 40
Использование creditscorecard с аргументом имя-значение 'BinMissingData' установлено на true для ввода отсутствующих числовых или категорийных данных в отдельное интервал. Применить автоматическое раскладывание.
sc = creditscorecard(dataMissing,'IDVar','CustID','BinMissingData',true); sc = autobinning(sc); disp(sc)
creditscorecard with properties:
GoodLabel: 0
ResponseVar: 'status'
WeightsVar: ''
VarNames: {1x11 cell}
NumericPredictors: {1x6 cell}
CategoricalPredictors: {'ResStatus' 'EmpStatus' 'OtherCC'}
BinMissingData: 1
IDVar: 'CustID'
PredictorVars: {1x9 cell}
Data: [1200x11 table]
Отобразите и постройте график информации о интервале для числовых данных для 'CustAge' который включает отсутствующие данные в отдельном интервале, маркированном <missing>.
[bi,cp] = bininfo(sc,'CustAge');
disp(bi) Bin Good Bad Odds WOE InfoValue
_____________ ____ ___ ______ ________ __________
{'[-Inf,33)'} 69 52 1.3269 -0.42156 0.018993
{'[33,37)' } 63 45 1.4 -0.36795 0.012839
{'[37,40)' } 72 47 1.5319 -0.2779 0.0079824
{'[40,46)' } 172 89 1.9326 -0.04556 0.0004549
{'[46,48)' } 59 25 2.36 0.15424 0.0016199
{'[48,51)' } 99 41 2.4146 0.17713 0.0035449
{'[51,58)' } 157 62 2.5323 0.22469 0.0088407
{'[58,Inf]' } 93 25 3.72 0.60931 0.032198
{'<missing>'} 19 11 1.7273 -0.15787 0.00063885
{'Totals' } 803 397 2.0227 NaN 0.087112
plotbins(sc,'CustAge')
Отображение и построение графика информации о интервале для категориальных данных для 'ResStatus' который включает отсутствующие данные в отдельном интервале, маркированном <missing>.
[bi,cg] = bininfo(sc,'ResStatus');
disp(bi) Bin Good Bad Odds WOE InfoValue
______________ ____ ___ ______ _________ __________
{'Tenant' } 296 161 1.8385 -0.095463 0.0035249
{'Home Owner'} 352 171 2.0585 0.017549 0.00013382
{'Other' } 128 52 2.4615 0.19637 0.0055808
{'<missing>' } 27 13 2.0769 0.026469 2.3248e-05
{'Totals' } 803 397 2.0227 NaN 0.0092627
plotbins(sc,'ResStatus')
Для 'CustAge' и 'ResStatus' предикторы, отсутствуют данные (NaNs и <undefined>) в обучающих данных и процессе раскладывания оценивает значение ГОРЕ -0.15787 и 0.026469 соответственно для отсутствующих данных в этих предикторах, как показано выше.
Использование fitmodel для подбора логистической регрессионной модели с использованием данных о весе доказательств (WOE). fitmodel внутренне преобразует все переменные предиктора в значения WOE, используя интервалы, найденные в процессе автоматического раскладывания. fitmodel затем подходит для логистической регрессионной модели с помощью пошагового метода (по умолчанию). Для предикторов, которые имеют отсутствующие данные, существует явное <missing> интервал с соответствующим значением WOE, вычисленным из данных. При использовании fitmodelсоответствующее значение ГОРЕ для < отсутствующего > интервала применяется при выполнении преобразования ГОРЕ.
[sc,mdl] = fitmodel(sc);
1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1442.8477, Chi2Stat = 4.4974731, PValue = 0.033944979
6. Adding ResStatus, Deviance = 1438.9783, Chi2Stat = 3.86941, PValue = 0.049173805
7. Adding OtherCC, Deviance = 1434.9751, Chi2Stat = 4.0031966, PValue = 0.045414057
Generalized linear regression model:
status ~ [Linear formula with 8 terms in 7 predictors]
Distribution = Binomial
Estimated Coefficients:
Estimate SE tStat pValue
________ ________ ______ __________
(Intercept) 0.70229 0.063959 10.98 4.7498e-28
CustAge 0.57421 0.25708 2.2335 0.025513
ResStatus 1.3629 0.66952 2.0356 0.04179
EmpStatus 0.88373 0.2929 3.0172 0.002551
CustIncome 0.73535 0.2159 3.406 0.00065929
TmWBank 1.1065 0.23267 4.7556 1.9783e-06
OtherCC 1.0648 0.52826 2.0156 0.043841
AMBalance 1.0446 0.32197 3.2443 0.0011775
1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 88.5, p-value = 2.55e-16
Отобразите неограниченные точки для предикторов, сохраненных в модели аппроксимации (для использования масштабных точек formatpoints).
PointsInfo = displaypoints(sc)
PointsInfo=38×3 table
Predictors Bin Points
_____________ ______________ _________
{'CustAge' } {'[-Inf,33)' } -0.14173
{'CustAge' } {'[33,37)' } -0.11095
{'CustAge' } {'[37,40)' } -0.059244
{'CustAge' } {'[40,46)' } 0.074167
{'CustAge' } {'[46,48)' } 0.1889
{'CustAge' } {'[48,51)' } 0.20204
{'CustAge' } {'[51,58)' } 0.22935
{'CustAge' } {'[58,Inf]' } 0.45019
{'CustAge' } {'<missing>' } 0.0096749
{'ResStatus'} {'Tenant' } -0.029778
{'ResStatus'} {'Home Owner'} 0.12425
{'ResStatus'} {'Other' } 0.36796
{'ResStatus'} {'<missing>' } 0.1364
{'EmpStatus'} {'Unknown' } -0.075948
{'EmpStatus'} {'Employed' } 0.31401
{'EmpStatus'} {'<missing>' } NaN
⋮
Заметьте, что точки для <missing> интервал для CustAge и ResStatus показаны явно. Эти точки вычисляются из значения WOE для < отсутствующего > интервала и коэффициентов логистической модели.
Для предикторов, которые не имеют отсутствующих данных в наборе обучающих данных, нет явных <missing> интервал, и по умолчанию для точек задано значение NaN для недостающих данных, и они приводят к счету NaN при запуске score. Для предикторов, которые не имеют явных <missing> интервал, используйте аргумент имя-значение 'Missing' в formatpoints чтобы указать, как отсутствующие данные должны обрабатываться в целях оценки.
В этом примере показано, как использовать formatpoints после того, как модель подгоняется для форматирования масштабированных точек, и затем используйте displaypoints отображение масштабированных точек на интервал, для заданного предиктора в creditscorecard модель.
Точки масштабируются, когда задана область значений. В частности, необходимо линейное преобразование из немасштабированных в масштабированные точки. Это преобразование определяется либо подачей сдвига и наклона, либо определением наихудших и наилучших счетов. (Для получения дополнительной информации см. formatpoints.)
Создайте creditscorecard объект с использованием CreditCardData.mat файл для загрузки data (использование набора данных из Refaat 2011). Используйте 'IDVar' аргумент в creditscorecard функция, указывающая, что 'CustID' содержит идентификационную информацию и не должен включаться в качестве переменной предиктора.
load CreditCardData sc = creditscorecard(data,'IDVar','CustID');
Выполните автоматическое раскладывание в интервал для всех предикторов.
sc = autobinning(sc);
Подбор линейной регрессионной модели с помощью параметров по умолчанию.
sc = fitmodel(sc);
1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769
Generalized linear regression model:
status ~ [Linear formula with 8 terms in 7 predictors]
Distribution = Binomial
Estimated Coefficients:
Estimate SE tStat pValue
________ ________ ______ __________
(Intercept) 0.70239 0.064001 10.975 5.0538e-28
CustAge 0.60833 0.24932 2.44 0.014687
ResStatus 1.377 0.65272 2.1097 0.034888
EmpStatus 0.88565 0.293 3.0227 0.0025055
CustIncome 0.70164 0.21844 3.2121 0.0013179
TmWBank 1.1074 0.23271 4.7589 1.9464e-06
OtherCC 1.0883 0.52912 2.0569 0.039696
AMBalance 1.045 0.32214 3.2439 0.0011792
1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16
Используйте formatpoints функция для масштабирования, обеспечивая 'Worst' и 'Best' значения баллов. Приведенная ниже область значений является общим счетом области значений.
sc = formatpoints(sc,'WorstAndBestScores',[300 850]);Снова отобразите информацию о точках, чтобы убедиться, что точки теперь масштабированы, а также отобразите масштабированные минимальные и максимальные счета.
[PointsInfo,MinScore,MaxScore] = displaypoints(sc)
PointsInfo=37×3 table
Predictors Bin Points
______________ ________________ ______
{'CustAge' } {'[-Inf,33)' } 46.396
{'CustAge' } {'[33,37)' } 48.727
{'CustAge' } {'[37,40)' } 58.772
{'CustAge' } {'[40,46)' } 72.167
{'CustAge' } {'[46,48)' } 93.256
{'CustAge' } {'[48,58)' } 95.256
{'CustAge' } {'[58,Inf]' } 126.46
{'CustAge' } {'<missing>' } NaN
{'ResStatus' } {'Tenant' } 62.421
{'ResStatus' } {'Home Owner' } 82.276
{'ResStatus' } {'Other' } 113.58
{'ResStatus' } {'<missing>' } NaN
{'EmpStatus' } {'Unknown' } 56.765
{'EmpStatus' } {'Employed' } 105.81
{'EmpStatus' } {'<missing>' } NaN
{'CustIncome'} {'[-Inf,29000)'} 8.9706
⋮
MinScore = 300
MaxScore = 850.0000
Заметьте, что, как и ожидалось, значения MinScore и MaxScore соответствуют наихудшим и наилучшим счетам.
В этом примере показано, как использовать displaypoints после того, как модель подобрана, чтобы отделить базовые точки от остальных точек, назначенных каждой переменной предиктора. Область аргумента пары "имя-значение" 'BasePoints' в formatpoints функция является логической, которая служит этой цели. По умолчанию базовые точки распределяются по всем переменным в карте показателей.
Создайте creditscorecard объект с использованием CreditCardData.mat файл для загрузки data (использование набора данных из Refaat 2011). Используйте 'IDVar' аргумент в creditscorecard функция, указывающая, что 'CustID' содержит идентификационную информацию и не должен включаться в качестве переменной предиктора.
load CreditCardData sc = creditscorecard(data,'IDVar','CustID');
Выполните автоматическое раскладывание в интервал для всех предикторов.
sc = autobinning(sc);
Подбор линейной регрессионной модели с помощью параметров по умолчанию.
sc = fitmodel(sc);
1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769
Generalized linear regression model:
status ~ [Linear formula with 8 terms in 7 predictors]
Distribution = Binomial
Estimated Coefficients:
Estimate SE tStat pValue
________ ________ ______ __________
(Intercept) 0.70239 0.064001 10.975 5.0538e-28
CustAge 0.60833 0.24932 2.44 0.014687
ResStatus 1.377 0.65272 2.1097 0.034888
EmpStatus 0.88565 0.293 3.0227 0.0025055
CustIncome 0.70164 0.21844 3.2121 0.0013179
TmWBank 1.1074 0.23271 4.7589 1.9464e-06
OtherCC 1.0883 0.52912 2.0569 0.039696
AMBalance 1.045 0.32214 3.2439 0.0011792
1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16
Используйте formatpoints функция для разделения базовых точек путем предоставления 'BasePoints' аргумент пары "имя-значение".
sc = formatpoints(sc,'BasePoints',true);Отобразите базовые точки, отделенные от других точек, для предикторов, сохраненных в модели аппроксимации.
PointsInfo = displaypoints(sc)
PointsInfo=38×3 table
Predictors Bin Points
______________ ______________ _________
{'BasePoints'} {'BasePoints'} 0.70239
{'CustAge' } {'[-Inf,33)' } -0.25928
{'CustAge' } {'[33,37)' } -0.24071
{'CustAge' } {'[37,40)' } -0.16066
{'CustAge' } {'[40,46)' } -0.053933
{'CustAge' } {'[46,48)' } 0.11411
{'CustAge' } {'[48,58)' } 0.13005
{'CustAge' } {'[58,Inf]' } 0.37866
{'CustAge' } {'<missing>' } NaN
{'ResStatus' } {'Tenant' } -0.13159
{'ResStatus' } {'Home Owner'} 0.026616
{'ResStatus' } {'Other' } 0.27607
{'ResStatus' } {'<missing>' } NaN
{'EmpStatus' } {'Unknown' } -0.17666
{'EmpStatus' } {'Employed' } 0.21415
{'EmpStatus' } {'<missing>' } NaN
⋮
В этом примере показано, как использовать displaypoints после установки модели и modifybins функция используется для предоставления пользовательских меток интервала для числового предиктора.
Создайте creditscorecard объект с использованием CreditCardData.mat файл для загрузки data (использование набора данных из Refaat 2011). Используйте 'IDVar' аргумент в creditscorecard функция, указывающая, что 'CustID' содержит идентификационную информацию и не должен включаться в качестве переменной предиктора.
load CreditCardData sc = creditscorecard(data,'IDVar','CustID');
Выполните автоматическое раскладывание в интервал для всех предикторов.
sc = autobinning(sc);
Подбор линейной регрессионной модели с помощью параметров по умолчанию.
sc = fitmodel(sc);
1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769
Generalized linear regression model:
status ~ [Linear formula with 8 terms in 7 predictors]
Distribution = Binomial
Estimated Coefficients:
Estimate SE tStat pValue
________ ________ ______ __________
(Intercept) 0.70239 0.064001 10.975 5.0538e-28
CustAge 0.60833 0.24932 2.44 0.014687
ResStatus 1.377 0.65272 2.1097 0.034888
EmpStatus 0.88565 0.293 3.0227 0.0025055
CustIncome 0.70164 0.21844 3.2121 0.0013179
TmWBank 1.1074 0.23271 4.7589 1.9464e-06
OtherCC 1.0883 0.52912 2.0569 0.039696
AMBalance 1.045 0.32214 3.2439 0.0011792
1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16
Используйте displaypoints функция для отображения информации о точке.
[PointsInfo,MinScore,MaxScore] = displaypoints(sc)
PointsInfo=37×3 table
Predictors Bin Points
______________ ________________ _________
{'CustAge' } {'[-Inf,33)' } -0.15894
{'CustAge' } {'[33,37)' } -0.14036
{'CustAge' } {'[37,40)' } -0.060323
{'CustAge' } {'[40,46)' } 0.046408
{'CustAge' } {'[46,48)' } 0.21445
{'CustAge' } {'[48,58)' } 0.23039
{'CustAge' } {'[58,Inf]' } 0.479
{'CustAge' } {'<missing>' } NaN
{'ResStatus' } {'Tenant' } -0.031252
{'ResStatus' } {'Home Owner' } 0.12696
{'ResStatus' } {'Other' } 0.37641
{'ResStatus' } {'<missing>' } NaN
{'EmpStatus' } {'Unknown' } -0.076317
{'EmpStatus' } {'Employed' } 0.31449
{'EmpStatus' } {'<missing>' } NaN
{'CustIncome'} {'[-Inf,29000)'} -0.45716
⋮
MinScore = -1.3100
MaxScore = 3.0726
Используйте modifybins функция для задания пользовательских меток интервала для 'CustAge' так, чтобы области значений были описаны на естественном языке.
labels = {'Up to 32','33 to 36','37 to 39','40 to 45','46 to 47','48 to 57','At least 58'};
sc = modifybins(sc,'CustAge','BinLabels',labels);Повторный запуск displaypoints для проверки обновленных меток интервала.
[PointsInfo,MinScore,MaxScore] = displaypoints(sc)
PointsInfo=37×3 table
Predictors Bin Points
______________ ________________ _________
{'CustAge' } {'Up to 32' } -0.15894
{'CustAge' } {'33 to 36' } -0.14036
{'CustAge' } {'37 to 39' } -0.060323
{'CustAge' } {'40 to 45' } 0.046408
{'CustAge' } {'46 to 47' } 0.21445
{'CustAge' } {'48 to 57' } 0.23039
{'CustAge' } {'At least 58' } 0.479
{'CustAge' } {'<missing>' } NaN
{'ResStatus' } {'Tenant' } -0.031252
{'ResStatus' } {'Home Owner' } 0.12696
{'ResStatus' } {'Other' } 0.37641
{'ResStatus' } {'<missing>' } NaN
{'EmpStatus' } {'Unknown' } -0.076317
{'EmpStatus' } {'Employed' } 0.31449
{'EmpStatus' } {'<missing>' } NaN
{'CustIncome'} {'[-Inf,29000)'} -0.45716
⋮
MinScore = -1.3100
MaxScore = 3.0726
В этом примере показано, как использовать кредитную карту показателей для вычисления весов предикторов. Веса предикторов определяются из области точек каждого предиктора, деленной на общую область точек для карты показателей. Точки для карты показателей не только берут во фактор беты, но и неявно раскладывания значений предиктора и соответствующих весов доказательств.
Создайте карту показателей.
load CreditCardData.mat sc = creditscorecard(data,'IDVar','CustID'); sc = autobinning(sc); sc = fitmodel(sc);
1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769
Generalized linear regression model:
status ~ [Linear formula with 8 terms in 7 predictors]
Distribution = Binomial
Estimated Coefficients:
Estimate SE tStat pValue
________ ________ ______ __________
(Intercept) 0.70239 0.064001 10.975 5.0538e-28
CustAge 0.60833 0.24932 2.44 0.014687
ResStatus 1.377 0.65272 2.1097 0.034888
EmpStatus 0.88565 0.293 3.0227 0.0025055
CustIncome 0.70164 0.21844 3.2121 0.0013179
TmWBank 1.1074 0.23271 4.7589 1.9464e-06
OtherCC 1.0883 0.52912 2.0569 0.039696
AMBalance 1.045 0.32214 3.2439 0.0011792
1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16
Вычислите точки карты показателей и MinPts и MaxPts счета.
sc = formatpoints(sc,'PointsOddsAndPDO',[500 2 50]);
[PointsTable,MinPts,MaxPts] = displaypoints(sc);
PtsRange = MaxPts-MinPts;
disp(PointsTable(1:10,:)); Predictors Bin Points
_____________ ______________ ______
{'CustAge' } {'[-Inf,33)' } 52.821
{'CustAge' } {'[33,37)' } 54.161
{'CustAge' } {'[37,40)' } 59.934
{'CustAge' } {'[40,46)' } 67.633
{'CustAge' } {'[46,48)' } 79.755
{'CustAge' } {'[48,58)' } 80.905
{'CustAge' } {'[58,Inf]' } 98.838
{'CustAge' } {'<missing>' } NaN
{'ResStatus'} {'Tenant' } 62.031
{'ResStatus'} {'Home Owner'} 73.444
fprintf('Min points: %g, Max points: %g\n',MinPts,MaxPts); Min points: 355.505, Max points: 671.64
Вычислите веса предиктора.
Predictor = unique(PointsTable.Predictors,'stable'); NumPred = length(Predictor); Weight = zeros(NumPred,1); for ii=1:NumPred Ind = cellfun(@(x)strcmpi(Predictor{ii},x),PointsTable.Predictors); MaxPtsPred = max(PointsTable.Points(Ind)); MinPtsPred = min(PointsTable.Points(Ind)); Weight(ii) = 100*(MaxPtsPred-MinPtsPred)/PtsRange; end PredictorWeights = table(Predictor,Weight); PredictorWeights(end+1,:) = PredictorWeights(end,:); PredictorWeights.Predictor{end} = 'Total'; PredictorWeights.Weight(end) = sum(Weight); disp(PredictorWeights)
Predictor Weight
______________ ______
{'CustAge' } 14.556
{'ResStatus' } 9.302
{'EmpStatus' } 8.9174
{'CustIncome'} 20.401
{'TmWBank' } 25.884
{'OtherCC' } 7.9885
{'AMBalance' } 12.951
{'Total' } 100
Веса определяются как область значений точек для предиктора, разделенный на область значений точек для карты показателей.
creditscorecard Объект, который содержит отсутствующие данныеКак создать creditscorecard объект с использованием CreditCardData.mat файл, загрузка data (использование набора данных из Refaat 2011). Использование dataMissing набор данных, установите 'BinMissingData' индикатор для true.
load CreditCardData.mat sc = creditscorecard(dataMissing,'BinMissingData',true);
Использование autobinning с creditscorecard объект.
sc = autobinning(sc);
binning map или правила для категориальных данных суммируются в таблице «группировка категорий», возвращаемой как необязательный выход. По умолчанию каждая категория помещается в отдельный интервал. Вот информация для предиктора ResStatus.
[bi,cg] = bininfo(sc,'ResStatus')bi=5×6 table
Bin Good Bad Odds WOE InfoValue
______________ ____ ___ ______ _________ __________
{'Tenant' } 296 161 1.8385 -0.095463 0.0035249
{'Home Owner'} 352 171 2.0585 0.017549 0.00013382
{'Other' } 128 52 2.4615 0.19637 0.0055808
{'<missing>' } 27 13 2.0769 0.026469 2.3248e-05
{'Totals' } 803 397 2.0227 NaN 0.0092627
cg=3×2 table
Category BinNumber
______________ _________
{'Tenant' } 1
{'Home Owner'} 2
{'Other' } 3
К категориям групп 'Tenant' и 'Other', измените таблицу группировок категорий cg, так что номер интервала для 'Other' совпадает с номером интервала для 'Tenant'. Затем используйте modifybins для обновления creditscorecard объект.
cg.BinNumber(3) = 2; sc = modifybins(sc,'ResStatus','Catg',cg);
Отображение обновленной информации о интервале с помощью bininfo. Обратите внимание, что метки интервалов были обновлены и что информация о принадлежности интервалов содержится в группе категорий cg.
[bi,cg] = bininfo(sc,'ResStatus')bi=4×6 table
Bin Good Bad Odds WOE InfoValue
_____________ ____ ___ ______ _________ __________
{'Group1' } 296 161 1.8385 -0.095463 0.0035249
{'Group2' } 480 223 2.1525 0.062196 0.0022419
{'<missing>'} 27 13 2.0769 0.026469 2.3248e-05
{'Totals' } 803 397 2.0227 NaN 0.00579
cg=3×2 table
Category BinNumber
______________ _________
{'Tenant' } 1
{'Home Owner'} 2
{'Other' } 2
Использование formatpoints с 'Missing' аргумент пары "имя-значение", указывающий, что назначены отсутствующие данные 'maxpoints'.
sc = formatpoints(sc,'BasePoints',true,'Missing','maxpoints','WorstAndBest',[300 800]);
Использование fitmodel для подгонки модели.
sc = fitmodel(sc,'VariableSelection','fullmodel','Display','Off');
Затем используйте displaypoints(Набор Risk Management Toolbox) с creditscorecard объект, чтобы вернуть таблицу точек для всех интервалов всех переменных предиктора, используемых в compactCreditScorecard объект. Путем установки displaypoints (Risk Management Toolbox) аргумент пары "имя-значение" для 'ShowCategoricalMembers' на trueотображаются все представители, содержащиеся в каждой отдельной группе.
[PointsInfo,MinScore,MaxScore] = displaypoints(sc,'ShowCategoricalMembers',true)PointsInfo=51×3 table
Predictors Bin Points
_______________ ______________ _______
{'BasePoints' } {'BasePoints'} 535.25
{'CustID' } {'[-Inf,121)'} 12.085
{'CustID' } {'[121,241)' } 5.4738
{'CustID' } {'[241,1081)'} -1.4061
{'CustID' } {'[1081,Inf]'} -7.2217
{'CustID' } {'<missing>' } 12.085
{'CustAge' } {'[-Inf,33)' } -25.973
{'CustAge' } {'[33,37)' } -22.67
{'CustAge' } {'[37,40)' } -17.122
{'CustAge' } {'[40,46)' } -2.8071
{'CustAge' } {'[46,48)' } 9.5034
{'CustAge' } {'[48,51)' } 10.913
{'CustAge' } {'[51,58)' } 13.844
{'CustAge' } {'[58,Inf]' } 37.541
{'CustAge' } {'<missing>' } -9.7271
{'TmAtAddress'} {'[-Inf,23)' } -9.3683
⋮
MinScore = 300
MaxScore = 800.0000
sc - Модель карты показателей кредитаcreditscorecard объектМодель карты показателей кредита, заданная как creditscorecard объект. Использование creditscorecard для создания creditscorecard объект.
Задайте необязательные разделенные разделенными запятой парами Name,Value аргументы. Name - имя аргумента и Value - соответствующее значение. Name должны находиться внутри кавычек. Можно задать несколько аргументов в виде пар имен и значений в любом порядке Name1,Value1,...,NameN,ValueN.
[PointsInfo,MinScore,MaxScore] = displaypoints(sc,‘ShowCategoricalMembers’,true)'ShowCategoricalMembers' - Индикатор отображения меток интервалов категорий, которые были сгруппированы вместеfalse
(по умолчанию) | true или falseИндикатор отображения меток интервалов категорий, которые были сгруппированы вместе, заданный как разделенная разделенными запятой парами, состоящая из 'ShowCategoricalMembers' и логический скаляр со значением true или false.
По умолчанию, когда 'ShowCategoricalMembers' является falseметки интервала отображаются следующим Group1, Group2, …, Groupn, или если метки интервала были изменены в creditscorecardзатем отображаются определяемые пользователем имена меток интервалов.
Если 'ShowCategoricalMembers' является trueотображаются все представители, содержащиеся в каждой отдельной группе.
Типы данных: logical
PointsInfo - Одна строка на интервал, на предиктор, с соответствующими точкамиОдна строка на интервал, на предиктор, с соответствующими точками, возвращается как таблица. Для примера:
| Предсказатели | Интервал | Точки |
|---|---|---|
| Predictor_1 | Bin_11 | Points_11 |
| Predictor_1 | Bin_12 | Points_12 |
| Predictor_1 | Bin_13 | Points_13 |
| ... | ... | |
| Predictor_1 | '<missing>' | NaN (По умолчанию) |
| Predictor_2 | Bin_21 | Points_21 |
| Predictor_2 | Bin_22 | Points_22 |
| Predictor_2 | Bin_23 | Points_23 |
| ... | ... | |
| Predictor_2 | '<missing>' | NaN (По умолчанию) |
| Predictor_<reservedrangesplaceholder0 > | Bin_<reservedrangesplaceholder1><reservedrangesplaceholder0 > | Points_<reservedrangesplaceholder1><reservedrangesplaceholder0 > |
| ... | ... | |
| Predictor_<reservedrangesplaceholder0 > | '<missing>' | NaN (По умолчанию) |
displaypoints всегда отображает '<missing>' интервал для каждого предиктора. Значение '<missing>' интервал происходит от начального creditscorecard объект и '<missing>' интервал установлено в NaN всякий раз, когда модель карты показателей не имеет информации о том, как назначить точки отсутствующим данным.
Чтобы сконфигурировать точки для '<missing>' интервал, необходимо использовать начальный creditscorecard объект. Для предикторов, которые имеют отсутствующие значения в наборе обучающих данных, точки для '<missing>' интервал оцениваются из данных, если 'BinMissingData' аргумент пары "имя-значение" для установлен в true использование creditscorecard. Когда 'BinMissingData' параметру задано значение false, или когда данные не содержат отсутствующих значений в наборе обучающих данных, используйте 'Missing' аргумент пары "имя-значение" в formatpoints чтобы указать, как назначить точки отсутствующим данным.
Другая опция - использовать fillmissing задать замену значений «fill» для предикторов на NaN или <undefined> значение. Если вы используете fillmissing, затем displaypoints
'<missing>' строка имеет те же точки, что и интервал, сопоставленный со значением заливки.
Когда базовые точки сообщаются отдельно (см. formatpoints), первая строка возвращенного PointsInfo таблица содержит базовые точки.
MinScore - Минимально возможный общий счетМинимально возможный суммарный счет, возвращенный в виде скаляра.
Примечание
Минимальный счет является самым низким возможным общим счетом в математическом смысле, независимо от того, означает ли низкий счет высокий риск или низкий риск.
MaxScore - Максимально возможный общий счетМаксимально возможный суммарный счет, возвращенный как скаляр.
Примечание
Максимальный счет является максимально возможным общим счетом в математическом смысле, независимо от того, означает ли высокий счет высокий риск или низкий риск.
Точки для j предиктора и i интервала по умолчанию заданы как
Points_ji = (Shift + Slope*b0)/p + Slope*(bj*WOEj(i))
предиктору модели. Shift и Slope являются масштабирующими константами.Когда базовые точки сообщаются отдельно (см. formatpoints аргумент пары "имя-значение" BasePoints), базовые точки заданы как
Base Points = Shift + Slope*b0,
Points_ji = Slope*(bj*WOEj(i))).
По умолчанию базовые точки не сообщаются отдельно.
Минимальные и максимальные счета:
MinScore = Shift + Slope*b0 + min(Slope*b1*WOE1) + ... +min(Slope*bp*WOEp)), MaxScore = Shift + Slope*b0 + max(Slope*b1*WOE1) + ... +max(Slope*bp*WOEp)).
Использовать formatpoints для управления масштабированием, округлением и тем, сообщаются ли базовые точки отдельно. Посмотрите formatpoints для получения дополнительной информации о параметрах формата, а также для получения подробной информации и формул по этим опциям форматирования.
[1] Anderson, R. The Credit Scoring Toolkit. Oxford University Press, 2007.
[2] Refaat, M. Кредитные карты оценки риска: Разработка и реализация с использованием SAS. lulu.com, 2011.
autobinning | bindata | bininfo | creditscorecard | fillmissing | fitmodel | formatpoints | modifybins | modifypredictor | plotbins | predictorinfo | probdefault | score | setmodel | validatemodel
У вас есть измененная версия этого примера. Вы хотите открыть этот пример с вашими правками?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.