Решение жестких дифференциальных уравнений - метод трапеций + формула дифференцирования назад
[, где t,y] =
ode23tb(odefun,tspan,y0)tspan = [t0 tf], интегрирует систему дифференциальных уравнений от t0 на tf с начальными условиями y0. Каждая строка массива решений y соответствует значению, возвращаемому в вектор-столбец t.
Все MATLAB® Решатели ОДУ могут решить системы уравнений вида , или задачи, которые включают большую матрицу, . Все решатели используют аналогичные синтаксисы. ode23s решатель может решить задачи только с большой матрицей, если большая матрица постоянна. ode15s и ode23t может решить задачи с большой матрицей, сингулярной, известной как дифференциально-алгебраические уравнения (ДАУ). Задайте большую матрицу используя Mass опция odeset.
[ также использует настройки интегрирования, заданные как t,y] =
ode23tb(odefun,tspan,y0,options)options, который является аргументом, созданным с помощью odeset функция. Для примера используйте AbsTol и RelTol опции для задания абсолютных и относительная погрешность допусков или Mass опция для задания большой матрицы.
[ дополнительно находит, где функции (t, y), называемые функциями события, равны нулю. В выходах t,y,te,ye,ie]
= ode23tb(odefun,tspan,y0,options)te - время события, ye является решением во время события и ie - индекс инициируемого события.
Для каждой функции события задайте, должно ли интегрирование завершаться на нуле и имеет ли значение направление пересечения нуля. Сделайте это, установив 'Events' свойство функции, например myEventFcn или @myEventFcn, и создание соответствующей функции: [value, isterminal, direction] = myEventFcn(t, y). Для получения дополнительной информации смотрите Расположение события ОДУ.
возвращает структуру, которую можно использовать с sol = ode23tb(___)deval для оценки решения в любой точке интервала [t0 tf]. Можно использовать любой из комбинаций входных аргументов в предыдущих синтаксисах.
ode23tb является реализацией TR-BDF2, неявной формулы Рунге-Кутты с методом трапеций качестве первого этапа и формулой обратного дифференцирования порядка два в качестве второго этапа. При конструкции одна и та же матрица итерации используется в оценке обоих этапов. Как ode23s и ode23t, этот решатель может быть более эффективным, чем ode15s для задач с допусками на сырую нефть [1], [2].
[1] Bank, R. E., W. C. Coughran, Jr., W. Fichtner, E. Grosse, D. Rose, and R. Smith, «Transient Simulation of Silicon Devices and Circuits», IEEE Trans. CAD, 4 (1985), pp. 436-451.
[2] шемпин, L. F. and M. E. Hosea, «Analysis and Implementation of TR-BDF2,» Applied Numerical Mathematics 20, 1996.