В этом примере показано, как симулировать случайные портфели с различными распределениями и сравнить их индексы концентрации. В иллюстрационных целях используются lognormal и распределение Вейбула. Параметры распределения выбираются произвольно, чтобы получить подобную область значений значений для обоих случайных портфелей.
Сгенерируйте случайные портфели с различными распределениями.
rng('default'); % for reproducibility PLgn = lognrnd(1,1,1,300); PWbl = wblrnd(2,0.5,1,300);
Отображение наибольшей моделируемого значения кредита.
fprintf('\nLargest loan Lognormal: %g\n',max(PLgn));
Largest loan Lognormal: 97.3582
fprintf('Largest loan Weibull: %g\n',max(PWbl));
Largest loan Weibull: 91.5866
Постройте график гистограмм портфеля.
figure; histogram(PLgn,0:5:100) hold on histogram(PWbl,0:5:100) hold off title('Random Loan Histograms') xlabel('Loan Amount') ylabel('Frequency') legend('Lognormal','Weibull')
Вычислите и отобразите измерения концентрации.
ciLgn = concentrationIndices(PLgn,'ID','Lognormal'); ciWbl = concentrationIndices(PWbl,'ID','Weibull'); disp([ciLgn;ciWbl])
ID CR Deciles Gini HH HK HT TE ___________ ________ _____________ _______ ________ _________ _________ _______ "Lognormal" 0.066363 [1x11 double] 0.5686 0.013298 0.0045765 0.0077267 0.66735 "Weibull" 0.090152 [1x11 double] 0.72876 0.020197 0.0062594 0.012289 1.0944
ProportionLoans = 0:0.1:1; figure; area(ProportionLoans',[ciWbl.Deciles; ciLgn.Deciles-ciWbl.Deciles; ProportionLoans-ciLgn.Deciles]') axis([0 1 0 1]) legend('Weibull','Lognormal','Diversified','Location','NorthWest') title('Lorenz Curve (by Deciles)') xlabel('Proportion of Loans') ylabel('Proportion of Value')