Классификационные потери для перекрестно проверенной модели ECOC
возвращает классификационные потери, полученные перекрестно проверенной моделью ECOC (loss
= kfoldLoss(CVMdl
)ClassificationPartitionedECOC
) CVMdl
. Для каждой складки, kfoldLoss
вычисляет классификационные потери для наблюдений с сгибом при валидации с использованием модели, обученной наблюдениям с сгибом при обучении. CVMdl.X
содержит оба набора наблюдений.
возвращает потери классификации с дополнительными опциями, заданными одним или несколькими аргументами пары "имя-значение". Для примера задайте количество складок, схему декодирования или уровень подробностей.loss
= kfoldLoss(CVMdl
,Name,Value
)
Загрузите набор данных радужки Фишера. Задайте данные предиктора X
, данные отклика Y
, и порядок классов в Y
.
load fisheriris X = meas; Y = categorical(species); classOrder = unique(Y); % Class order rng(1); % For reproducibility
Обучите и перекрестная проверка модели ECOC с помощью машины опорных векторов (SVM) двоичных классификаторов. Стандартизируйте предикторы с помощью шаблона SVM и задайте порядок классов.
t = templateSVM('Standardize',1); CVMdl = fitcecoc(X,Y,'CrossVal','on','Learners',t,'ClassNames',classOrder);
CVMdl
является ClassificationPartitionedECOC
модель. По умолчанию программное обеспечение реализует 10-кратную перекрестную валидацию. Вы можете задать другое количество складок, используя 'KFold'
аргумент пары "имя-значение".
Оцените среднюю ошибку классификации.
L = kfoldLoss(CVMdl)
L = 0.0400
Средняя ошибка классификации для складок составляет 4%.
Также можно получить потери в относительных единицах путем определения пары "имя-значение" 'Mode','individual'
в kfoldLoss
.
Классификационные потери являются мерой качества классификатора. Чтобы определить, какие складки выполняются плохо, отобразите потери для каждой складки.
Загрузите набор данных радужки Фишера. Задайте данные предиктора X
, данные отклика Y
, и порядок классов в Y
.
load fisheriris X = meas; Y = categorical(species); classOrder = unique(Y); rng(1); % For reproducibility
Обучите модель ECOC с помощью двоичных классификаторов SVM. Используйте 8-кратную перекрестную валидацию, стандартизируйте предикторы с помощью шаблона SVM и задайте порядок классов.
t = templateSVM('Standardize',1); CVMdl = fitcecoc(X,Y,'KFold',8,'Learners',t,'ClassNames',classOrder);
Оцените средние классификационные потери по всем складкам и потери по каждой складке.
loss = kfoldLoss(CVMdl)
loss = 0.0333
losses = kfoldLoss(CVMdl,'Mode','individual')
losses = 8×1
0.0556
0.0526
0.1579
0
0
0
0
0
Третья складка ошибочно классифицирует намного более высокий процент наблюдений, чем любая другая складка.
Верните средние классификационные потери для складок, которые работают хорошо, задав 'Folds'
аргумент пары "имя-значение".
newloss = kfoldLoss(CVMdl,'Folds',[1:2 4:8])
newloss = 0.0153
Общий размер классификационных потерь уменьшается примерно вдвое.
Рассмотрите настройку параметров двоичных классификаторов или проекта кодирования, чтобы увидеть, улучшается ли эффективность для всех складок.
В дополнение к знанию, правильно ли модель классифицирует наблюдения, можно определить, насколько хорошо модель классифицирует наблюдения в свой предсказанный класс. Один из способов определить этот тип качества модели - передать пользовательскую функцию потерь в kfoldLoss
.
Загрузите набор данных радужки Фишера. Задайте данные предиктора X
, данные отклика Y
, и порядок классов в Y
.
load fisheriris X = meas; Y = categorical(species); classOrder = unique(Y) % Class order
classOrder = 3x1 categorical
setosa
versicolor
virginica
rng(1) % For reproducibility
Обучите и перекрестная проверка модели ECOC с помощью двоичных классификаторов SVM. Стандартизируйте предикторы с помощью шаблона SVM и задайте порядок классов.
t = templateSVM('Standardize',1); CVMdl = fitcecoc(X,Y,'CrossVal','on','Learners',t,'ClassNames',classOrder);
CVMdl
является ClassificationPartitionedECOC
модель. По умолчанию программное обеспечение реализует 10-кратную перекрестную валидацию. Вы можете задать другое количество складок, используя 'KFold'
аргумент пары "имя-значение".
Создайте пользовательскую функцию, которая принимает минимальные потери для каждого наблюдения, затем усредняет минимальные потери для всех наблюдений. S
соответствует NegLoss
выход kfoldPredict
.
lossfun = @(~,S,~,~)mean(min(-S,[],2));
Вычислите перекрестную проверенную пользовательскую потерю.
kfoldLoss(CVMdl,'LossFun',lossfun)
ans = 0.0101
Минимальные средние значения двоичные потери для наблюдений с сворачиванием 0.0101
.
CVMdl
- Перекрестная проверенная модель ECOCClassificationPartitionedECOC
модельПерекрестная проверенная модель ECOC, заданная как ClassificationPartitionedECOC
модель. Можно создать ClassificationPartitionedECOC
моделировать двумя способами:
Передайте обученную модель ECOC (ClassificationECOC
Кому crossval
.
Обучите модель ECOC с помощью fitcecoc
и задайте любой из следующих аргументов пары "имя-значение" перекрестной проверки: 'CrossVal'
, 'CVPartition'
, 'Holdout'
, 'KFold'
, или 'Leaveout'
.
Задайте необязательные разделенные разделенными запятой парами Name,Value
аргументы. Name
- имя аргумента и Value
- соответствующее значение. Name
должны находиться внутри кавычек. Можно задать несколько аргументов в виде пар имен и значений в любом порядке Name1,Value1,...,NameN,ValueN
.
kfoldLoss(CVMdl,'Folds',[1 3 5])
задает использование только первой, третьей и пятой складок для вычисления классификационных потерь.'BinaryLoss'
- Бинарная функция потерь для учащихся'hamming'
| 'linear'
| 'logit'
| 'exponential'
| 'binodeviance'
| 'hinge'
| 'quadratic'
| указатель на функциюДвоичная функция потерь учащегося, заданная как разделенная разделенными запятой парами, состоящая из 'BinaryLoss'
и встроенное имя функции потери или указатель на функцию.
Эта таблица описывает встроенные функции, где yj является меткой класса для конкретного двоичного ученика (в наборе {-1,1,0}), sj является счетом для j наблюдений, а g (yj, sj) является формулой двоичных потерь.
Значение | Описание | Счет | g (yj, sj) |
---|---|---|---|
'binodeviance' | Биномиальное отклонение | (–∞,∞) | log [1 + exp (-2 yjsj) ]/[ 2log (2)] |
'exponential' | Экспоненциал | (–∞,∞) | exp (- yjsj )/2 |
'hamming' | Хэмминг | [0,1] или (- ∞, ∞) | [1 - знак (yjsj) ]/2 |
'hinge' | Стержень | (–∞,∞) | макс (0,1 - yjsj )/2 |
'linear' | Линейный | (–∞,∞) | (1 – yjsj)/2 |
'logit' | Логистический | (–∞,∞) | журнал [1 + exp (- yjsj) ]/[ 2log (2)] |
'quadratic' | Квадратный | [0,1] | [1 – yj (2 sj – 1)]2/2 |
Программа нормализует двоичные потери так, чтобы потеря была 0,5 при yj = 0. Кроме того, программное обеспечение вычисляет средние двоичные потери для каждого класса.
Для пользовательской функции двоичных потерь, например customFunction
, задайте его указатель на функцию 'BinaryLoss',@customFunction
.
customFunction
имеет следующую форму:
bLoss = customFunction(M,s)
M
- K матрица кодирования L, сохраненная в Mdl.CodingMatrix
.
s
- вектор-строка L 1 байта классификационных баллов.
bLoss
- классификационные потери. Этот скаляр агрегирует двоичные потери для каждого учащегося в конкретном классе. Для примера можно использовать среднее значение двоичных потерь для агрегирования потерь по учащимся для каждого класса.
K - количество классов.
L - это количество двоичных учащихся.
Для примера передачи пользовательской функции двоичных потерь смотрите Предсказание меток теста-образца модели ECOC с помощью Пользовательской функции двоичных потерь.
Значение по умолчанию BinaryLoss
значение зависит от областей значений счетов, возвращаемых двоичными учениками. Эта таблица описывает некоторые BinaryLoss
по умолчанию значения, основанные на данных допущениях.
Предположение | Значение по умолчанию |
---|---|
Все двоичные ученики являются SVM или линейными или ядерными классификационными моделями учащихся SVM. | 'hinge' |
Все двоичные ученики - это ансамбли, обученные AdaboostM1 или GentleBoost . | 'exponential' |
Все двоичные ученики - это ансамбли, обученные LogitBoost . | 'binodeviance' |
Все двоичные ученики являются линейными или ядерными классификационными моделями обучающихся логистической регрессии. Или вы задаете, чтобы предсказать апостериорные вероятности класса путем установки 'FitPosterior',true в fitcecoc . | 'quadratic' |
Чтобы проверить значение по умолчанию, используйте запись через точку для отображения BinaryLoss
свойство обученной модели в командной строке.
Пример: 'BinaryLoss','binodeviance'
Типы данных: char
| string
| function_handle
'Decoding'
- Схема декодирования'lossweighted'
(по умолчанию) | 'lossbased'
Схема декодирования, которая агрегирует двоичные потери, заданные как разделенная разделенными запятой парами, состоящая из 'Decoding'
и 'lossweighted'
или 'lossbased'
. Для получения дополнительной информации смотрите Двоичные потери.
Пример: 'Decoding','lossbased'
'Folds'
- Складывайте индексы для предсказания1:CVMdl.KFold
(по умолчанию) | числовой вектор положительных целых чиселИндексы сгиба для предсказания, заданные как разделенная разделенными запятой парами, состоящая из 'Folds'
и числовой вектор положительных целых чисел. Элементы Folds
должен находиться в области значений от 1
на CVMdl.KFold
.
Программа использует только складки, указанные в Folds
для предсказания.
Пример: 'Folds',[1 4 10]
Типы данных: single
| double
'LossFun'
- Функция потерь'classiferror'
(по умолчанию) | указатель на функциюФункция потерь, заданная как разделенная разделенными запятой парами, состоящая из 'LossFun'
и 'classiferror'
или указатель на функцию.
Задайте встроенную функцию 'classiferror'
. В этом случае функция потерь является ошибкой классификации.
Или задайте свою собственную функцию, используя обозначение указателя на функцию.
Предположим, что n является количеством наблюдений в обучающих данных (CVMdl.NumObservations
) и K количество классов (numel(CVMdl.ClassNames)
). Вашей функции нужна подпись lossvalue =
, где:lossfun
(C, S, W, стоимость)
Выходной аргумент lossvalue
является скаляром.
Вы задаете имя функции (lossfun
).
C
является n -by K логической матрицей с строками, указывающими класс, к которому принадлежит соответствующее наблюдение. Порядок столбцов соответствует порядку классов в CVMdl.ClassNames
.
Конструкция C
путем установки C(p,q) = 1
если наблюдение p
находится в q классов
, для каждой строки. Установите каждый элемент строки p
на 0
.
S
- n -by K числовая матрица отрицательных значений потерь для классов. Каждая строка соответствует наблюдению. Порядок столбцов соответствует порядку классов в CVMdl.ClassNames
. Область входа S
напоминает выходной аргумент NegLoss
из kfoldPredict
.
W
является n -by-1 числовым вектором весов наблюдений. Если вы сдаете W
программное обеспечение нормирует свои элементы в сумме к 1
.
Cost
является K -by K числовой матрицей затрат на неправильную классификацию. Для примера, Cost
= ones(K) – eye(K)
задает стоимость 0 для правильной классификации и 1 для неправильной классификации.
Задайте свою функцию используя 'LossFun',@lossfun
.
Типы данных: char
| string
| function_handle
'Mode'
- Уровень агрегации для выхода'average'
(по умолчанию) | 'individual'
Уровень агрегации для выхода, заданный как разделенная разделенными запятой парами, состоящая из 'Mode'
и 'average'
или 'individual'
.
В этой таблице описываются значения.
Значение | Описание |
---|---|
'average' | Выход является скаляром средним по всем складкам. |
'individual' | Выход является вектором длины k содержащим одно значение на складку, где k количество складок. |
Пример: 'Mode','individual'
'Options'
- опции оценки[]
(по умолчанию) | массив структур, возвращенный statset
Опции оценки, заданные как разделенная разделенными запятой парами, состоящая из 'Options'
и массив структур, возвращенный statset
.
Чтобы вызвать параллельные вычисления:
Вам нужна лицензия Parallel Computing Toolbox™.
Задайте 'Options',statset('UseParallel',true)
.
'Verbose'
- Уровень подробностей0
(по умолчанию) | 1
Уровень подробностей, заданный как разделенная разделенными запятой парами, состоящая из 'Verbose'
и 0
или 1
. Verbose
управляет количеством диагностических сообщений, которые программное обеспечение отображений в Командном окне.
Если Verbose
является 0
тогда программа не отображает диагностические сообщения. В противном случае программа отображает диагностические сообщения.
Пример: 'Verbose',1
Типы данных: single
| double
loss
- Классификационные потериКлассификационные потери, возвращенные как числовой скаляр или числовой вектор-столбец.
Если Mode
является 'average'
, затем loss
- средние классификационные потери по всем складкам. В противном случае loss
является k числовым вектором-1, содержащим классификационные потери для каждой складки, где k количество складок.
classification error является двоичной мерой ошибки классификации, которая имеет вид
где:
wj - вес для j наблюдений. Программа перенормирует веса до суммы 1.
ej = 1, если предсказанный класс j наблюдения отличается от его истинного класса, и 0 в противном случае.
Другими словами, классификационная ошибка является долей наблюдений, неправильно классифицированных классификатором.
binary loss является функцией класса и классификационной оценки, которая определяет, насколько хорошо двоичный ученик классифицирует наблюдение в класс.
Предположим следующее:
mkj является элементом (k, j) матрицы разработки кодирования M (то есть кода, соответствующего k классов двоичных j обучающегося).
sj - этот счет двоичных j учащихся для наблюдения.
g является функцией двоичных потерь.
- предсказанный класс для наблюдения.
В loss-based decoding [Escalera et al.] класс, производящий минимальную сумму двоичных потерь по сравнению с двоичными учениками, определяет предсказанный класс наблюдения, то есть
В loss-weighted decoding [Escalera et al.] класс, производящий минимальное среднее значение двоичных потерь по сравнению с двоичными учениками, определяет предсказанный класс наблюдения, то есть
Allwein et al. предположим, что утраченное декодирование повышает точность классификации путем сохранения значений потерь для всех классов в одной динамической области значений.
В этой таблице приведены поддерживаемые функции потерь, где yj является меткой класса для конкретного двоичного обучающегося (в наборе {-1,1,0}), sj является счетом для j наблюдений и g (yj, sj).
Значение | Описание | Счет | g (yj, sj) |
---|---|---|---|
'binodeviance' | Биномиальное отклонение | (–∞,∞) | log [1 + exp (-2 yjsj) ]/[ 2log (2)] |
'exponential' | Экспоненциал | (–∞,∞) | exp (- yjsj )/2 |
'hamming' | Хэмминг | [0,1] или (- ∞, ∞) | [1 - знак (yjsj) ]/2 |
'hinge' | Стержень | (–∞,∞) | макс (0,1 - yjsj )/2 |
'linear' | Линейный | (–∞,∞) | (1 – yjsj)/2 |
'logit' | Логистический | (–∞,∞) | журнал [1 + exp (- yjsj) ]/[ 2log (2)] |
'quadratic' | Квадратный | [0,1] | [1 – yj (2 sj – 1)]2/2 |
Программа нормализует двоичные потери таким образом, что потеря составляет 0,5 при yj = 0, и агрегирует, используя среднее значение двоичных учащихся [Allwein et al.].
Не путайте двоичные потери с общими классификационными потерями (заданными 'LossFun'
Аргумент пары "имя-значение" из loss
и predict
функции объекта), который измеряет, насколько хорошо классификатор ECOC работает в целом.
[1] Allwein, E., R. Schapire, and Y. Singer. «Сокращение многоклассового числа до двоичного: Унифицирующий подход к маржинальным classifiers». Журнал исследований машинного обучения. Том 1, 2000, стр. 113-141.
[2] Эскалера, С., О. Пужоль, и П. Радева. «О процессе декодирования в троичных выходных кодах с исправлением ошибок». Транзакции IEEE по шаблонному анализу и машинному анализу. Том 32, Выпуск 7, 2010, стр. 120-134.
[3] Эскалера, С., О. Пужоль, и П. Радева. «Разделяемость троичных кодов для разреженных проектов выходных кодов с исправлением ошибок». Pattern Recogn (Повторный вызов шаблона). Том 30, Выпуск 3, 2009, стр. 285-297.
Чтобы выполнять параллельно, задайте 'Options'
аргумент имя-значение в вызове этой функции и установите 'UseParallel'
поле структуры опций для true
использование statset
.
Для примера: 'Options',statset('UseParallel',true)
Для получения дополнительной информации о параллельных вычислениях смотрите Запуск функций MATLAB с автоматической поддержкой параллельных вычислений (Parallel Computing Toolbox).
ClassificationECOC
| ClassificationPartitionedECOC
| fitcecoc
| kfoldPredict
| loss
| statset
У вас есть измененная версия этого примера. Вы хотите открыть этот пример с вашими правками?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.