fitcauto

Автоматический выбор классификационной модели с оптимизированными гиперпараметрами

Описание

Данные предиктора и отклика, fitcauto автоматически пытается выбрать типы классификационных моделей с различными значениями гиперзначений параметров. Функция использует байесовскую оптимизацию, чтобы выбрать модели и их значения гиперзначений параметров, и вычисляет ошибку классификации перекрестной валидации для каждой модели. После завершения оптимизации, fitcauto возвращает модель, обученную на целом наборе данных, которая, как ожидается, лучше всего классифицирует новые данные. Вы можете использовать predict и loss функции объекта возвращенной модели для классификации новых данных и вычисления ошибки классификации тестового набора, соответственно.

Использовать fitcauto когда вы не уверены, какие типы классификаторов лучше всего соответствуют вашим данным. Для получения информации об альтернативных методах настройки гиперпараметров классификационных моделей, см. «Альтернативная функциональность».

пример

Mdl = fitcauto(Tbl,ResponseVarName) возвращает классификационную модель Mdl с настроенными гиперпараметрами. Таблица Tbl содержит переменные предиктора и переменную отклика, где ResponseVarName - имя переменной отклика.

Mdl = fitcauto(Tbl,formula) использует formula задать переменную отклика и переменные предиктора, которые будут учитываться среди переменных в Tbl.

Mdl = fitcauto(Tbl,Y) использует переменные предиктора в таблице Tbl и метки классов в векторных Y.

пример

Mdl = fitcauto(X,Y) использует переменные предиктора в матрице X и метки классов в векторных Y.

Mdl = fitcauto(___,Name,Value) задает опции, использующие один или несколько аргументы пары "имя-значение" в дополнение к любой комбинации входных аргументов в предыдущих синтаксисах. Для примера используйте HyperparameterOptimizationOptions аргумент пары "имя-значение", чтобы задать, как выполняется байесовская оптимизация.

пример

[Mdl,OptimizationResults] = fitcauto(___) дополнительно возвращается OptimizationResults, а BayesianOptimization объект, содержащий результаты выбора модели и процесса настройки гиперпараметра.

Примеры

свернуть все

Использование fitcauto чтобы автоматически выбрать классификационную модель с оптимизированными гиперпараметрами, данные предиктора и отклика, сохраненные в таблице.

Загрузка данных

Загрузите carbig набор данных, содержащий измерения автомобилей 1970-х и начала 1980-х годов.

load carbig

Классифицировать автомобили исходя из того, были ли они произведены в США.

Origin = categorical(cellstr(Origin));
Origin = mergecats(Origin,{'France','Japan','Germany', ...
    'Sweden','Italy','England'},'NotUSA');

Создайте таблицу, содержащую переменные предиктора Acceleration, Displacement, и так далее, а также переменная отклика Origin.

cars = table(Acceleration,Displacement,Horsepower, ...
    Model_Year,MPG,Weight,Origin);

Данные о разделах

Разделите данные на обучающие и тестовые наборы. Используйте приблизительно 80% наблюдений для процесса выбора модели и настройки гиперпараметра и 20% наблюдений, чтобы проверить эффективность конечной модели, возвращенной fitcauto. Использование cvpartition для разбиения данных на разделы.

rng('default') % For reproducibility of the data partition
c = cvpartition(Origin,'Holdout',0.2);
trainingIdx = training(c); % Training set indices
carsTrain = cars(trainingIdx,:);
testIdx = test(c); % Test set indices
carsTest = cars(testIdx,:);

Выполняйте fitcauto

Передайте обучающие данные в fitcauto. По умолчанию fitcauto определяет соответствующие типы модели, чтобы попробовать, использует байесовскую оптимизацию, чтобы найти хорошие значения гиперзначений параметров, и возвращает обученную модель Mdl с наилучшей ожидаемой эффективностью. Кроме того, fitcauto предоставляет график оптимизации и итерационное отображение результатов оптимизации. Для получения дополнительной информации о том, как интерпретировать эти результаты, смотрите Подробное отображение.

Ожидайте, что этот процесс займет некоторое время. Чтобы ускорить процесс оптимизации, рассмотрите установку, чтобы запустить оптимизацию параллельно, если у вас есть лицензия Parallel Computing Toolbox™. Для этого передайте 'HyperparameterOptimizationOptions',struct('UseParallel',true) на fitcauto как аргумент пары "имя-значение".

Mdl = fitcauto(carsTrain,'Origin');
Warning: It is recommended that you first standardize all numeric predictors when optimizing the Naive Bayes 'Width' parameter. Ignore this warning if you have done that.
Learner types to explore: ensemble, knn, nb, svm, tree
Total iterations (MaxObjectiveEvaluations): 150
Total time (MaxTime): Inf

|=================================================================================================================================|
| Iter | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|=================================================================================================================================|
|    1 | Best   |    0.14154 |            10.563 |         0.14154 |         0.14154 |     ensemble | Method:                 Bag |
|      |        |            |                   |                 |                 |              | NumLearningCycles:      201 |
|      |        |            |                   |                 |                 |              | MinLeafSize:              7 |
|    2 | Accept |    0.18269 |           0.57392 |         0.14154 |         0.14154 |          knn | NumNeighbors:             3 |
|    3 | Accept |    0.23397 |            0.1264 |         0.14154 |         0.14154 |          knn | NumNeighbors:            91 |
|    4 | Accept |    0.16308 |            12.867 |         0.14154 |         0.15468 |     ensemble | Method:          LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:      274 |
|      |        |            |                   |                 |                 |              | MinLeafSize:             15 |
|    5 | Accept |    0.20833 |             0.124 |         0.14154 |         0.15468 |          knn | NumNeighbors:             4 |
|    6 | Accept |    0.22115 |          0.079641 |         0.14154 |         0.15468 |          knn | NumNeighbors:            28 |
|    7 | Accept |    0.16923 |           0.20013 |         0.14154 |         0.15468 |         tree | MinLeafSize:            105 |
|    8 | Accept |    0.37179 |           0.59222 |         0.14154 |         0.15468 |          svm | BoxConstraint:     0.022186 |
|      |        |            |                   |                 |                 |              | KernelScale:       0.085527 |
|    9 | Accept |    0.37179 |           0.11659 |         0.14154 |         0.15468 |          svm | BoxConstraint:     0.045899 |
|      |        |            |                   |                 |                 |              | KernelScale:      0.0024758 |
|   10 | Accept |    0.24615 |           0.98386 |         0.14154 |         0.15468 |           nb | DistributionNames:   kernel |
|      |        |            |                   |                 |                 |              | Width:               1.1327 |
|=================================================================================================================================|
| Iter | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|=================================================================================================================================|
|   11 | Accept |    0.16923 |          0.079996 |         0.14154 |         0.15468 |         tree | MinLeafSize:             78 |
|   12 | Accept |    0.26923 |           0.10923 |         0.14154 |         0.15468 |          svm | BoxConstraint:       11.063 |
|      |        |            |                   |                 |                 |              | KernelScale:         15.114 |
|   13 | Best   |    0.12923 |           0.11568 |         0.12923 |         0.15468 |         tree | MinLeafSize:              3 |
|   14 | Accept |    0.21154 |          0.084406 |         0.12923 |         0.15468 |          knn | NumNeighbors:             2 |
|   15 | Accept |    0.14154 |          0.080022 |         0.12923 |         0.15294 |         tree | MinLeafSize:              1 |
|   16 | Accept |    0.14769 |          0.092395 |         0.12923 |         0.15097 |         tree | MinLeafSize:              2 |
|   17 | Accept |    0.14154 |            10.869 |         0.12923 |         0.14872 |     ensemble | Method:                 Bag |
|      |        |            |                   |                 |                 |              | NumLearningCycles:      208 |
|      |        |            |                   |                 |                 |              | MinLeafSize:             10 |
|   18 | Accept |    0.37179 |           0.12386 |         0.12923 |         0.14872 |          svm | BoxConstraint:       116.46 |
|      |        |            |                   |                 |                 |              | KernelScale:        0.52908 |
|   19 | Accept |    0.22769 |           0.15545 |         0.12923 |         0.14872 |           nb | DistributionNames:   normal |
|      |        |            |                   |                 |                 |              | Width:                  NaN |
|   20 | Accept |    0.22115 |          0.070813 |         0.12923 |         0.14872 |          knn | NumNeighbors:             8 |
|=================================================================================================================================|
| Iter | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|=================================================================================================================================|
|   21 | Accept |    0.37179 |           0.11553 |         0.12923 |         0.14872 |          svm | BoxConstraint:       45.341 |
|      |        |            |                   |                 |                 |              | KernelScale:        0.76949 |
|   22 | Accept |    0.12923 |          0.080362 |         0.12923 |         0.14194 |         tree | MinLeafSize:              3 |
|   23 | Best   |    0.10154 |          0.079656 |         0.10154 |         0.13213 |         tree | MinLeafSize:              5 |
|   24 | Accept |    0.22769 |            0.2529 |         0.10154 |         0.13213 |           nb | DistributionNames:   kernel |
|      |        |            |                   |                 |                 |              | Width:              0.42571 |
|   25 | Accept |    0.11385 |          0.080085 |         0.10154 |          0.1289 |         tree | MinLeafSize:             11 |
|   26 | Accept |    0.13782 |          0.092228 |         0.10154 |          0.1289 |          svm | BoxConstraint:       9.7286 |
|      |        |            |                   |                 |                 |              | KernelScale:         293.41 |
|   27 | Accept |    0.22769 |          0.073346 |         0.10154 |          0.1289 |           nb | DistributionNames:   normal |
|      |        |            |                   |                 |                 |              | Width:                  NaN |
|   28 | Accept |    0.21795 |          0.074914 |         0.10154 |          0.1289 |          knn | NumNeighbors:            42 |
|   29 | Accept |    0.24308 |           0.27621 |         0.10154 |          0.1289 |           nb | DistributionNames:   kernel |
|      |        |            |                   |                 |                 |              | Width:               4.4662 |
|   30 | Accept |    0.16308 |            12.328 |         0.10154 |          0.1289 |     ensemble | Method:          LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:      267 |
|      |        |            |                   |                 |                 |              | MinLeafSize:            131 |
|=================================================================================================================================|
| Iter | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|=================================================================================================================================|
|   31 | Accept |    0.24308 |           0.22334 |         0.10154 |          0.1289 |           nb | DistributionNames:   kernel |
|      |        |            |                   |                 |                 |              | Width:              0.66296 |
|   32 | Accept |    0.22115 |          0.066711 |         0.10154 |          0.1289 |          knn | NumNeighbors:            28 |
|   33 | Accept |    0.13846 |          0.079934 |         0.10154 |         0.12465 |         tree | MinLeafSize:             25 |
|   34 | Accept |    0.21474 |          0.085438 |         0.10154 |         0.12465 |          knn | NumNeighbors:            14 |
|   35 | Accept |    0.16615 |             10.05 |         0.10154 |         0.12465 |     ensemble | Method:          LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:      215 |
|      |        |            |                   |                 |                 |              | MinLeafSize:             13 |
|   36 | Accept |    0.14154 |            12.866 |         0.10154 |         0.12465 |     ensemble | Method:                 Bag |
|      |        |            |                   |                 |                 |              | NumLearningCycles:      254 |
|      |        |            |                   |                 |                 |              | MinLeafSize:             31 |
|   37 | Accept |    0.22769 |          0.070251 |         0.10154 |         0.12465 |           nb | DistributionNames:   normal |
|      |        |            |                   |                 |                 |              | Width:                  NaN |
|   38 | Accept |    0.37179 |          0.077924 |         0.10154 |         0.12465 |          svm | BoxConstraint:    0.0073633 |
|      |        |            |                   |                 |                 |              | KernelScale:         774.33 |
|   39 | Accept |    0.16923 |          0.068411 |         0.10154 |         0.12552 |         tree | MinLeafSize:             82 |
|   40 | Accept |    0.20833 |          0.064563 |         0.10154 |         0.12552 |          knn | NumNeighbors:             4 |
|=================================================================================================================================|
| Iter | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|=================================================================================================================================|
|   41 | Accept |    0.16308 |            12.932 |         0.10154 |         0.12552 |     ensemble | Method:          LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:      274 |
|      |        |            |                   |                 |                 |              | MinLeafSize:            150 |
|   42 | Accept |    0.22462 |           0.24365 |         0.10154 |         0.12552 |           nb | DistributionNames:   kernel |
|      |        |            |                   |                 |                 |              | Width:               121.64 |
|   43 | Accept |    0.20308 |            11.027 |         0.10154 |         0.12552 |     ensemble | Method:                 Bag |
|      |        |            |                   |                 |                 |              | NumLearningCycles:      229 |
|      |        |            |                   |                 |                 |              | MinLeafSize:            117 |
|   44 | Accept |    0.16923 |          0.069279 |         0.10154 |         0.12291 |         tree | MinLeafSize:             84 |
|   45 | Accept |    0.22769 |          0.078716 |         0.10154 |         0.12291 |           nb | DistributionNames:   normal |
|      |        |            |                   |                 |                 |              | Width:                  NaN |
|   46 | Accept |    0.22769 |          0.068458 |         0.10154 |         0.12291 |           nb | DistributionNames:   normal |
|      |        |            |                   |                 |                 |              | Width:                  NaN |
|   47 | Accept |    0.16615 |            9.9849 |         0.10154 |         0.12291 |     ensemble | Method:          LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:      212 |
|      |        |            |                   |                 |                 |              | MinLeafSize:             49 |
|   48 | Accept |    0.14769 |            14.541 |         0.10154 |         0.12291 |     ensemble | Method:                 Bag |
|      |        |            |                   |                 |                 |              | NumLearningCycles:      288 |
|      |        |            |                   |                 |                 |              | MinLeafSize:             25 |
|   49 | Accept |    0.23077 |           0.21379 |         0.10154 |         0.12291 |           nb | DistributionNames:   kernel |
|      |        |            |                   |                 |                 |              | Width:               73.249 |
|   50 | Accept |    0.37179 |          0.091937 |         0.10154 |         0.12291 |          svm | BoxConstraint:    0.0036501 |
|      |        |            |                   |                 |                 |              | KernelScale:         1.0504 |
|=================================================================================================================================|
| Iter | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|=================================================================================================================================|
|   51 | Accept |    0.21474 |          0.098808 |         0.10154 |         0.12291 |          svm | BoxConstraint:       64.859 |
|      |        |            |                   |                 |                 |              | KernelScale:         23.779 |
|   52 | Accept |    0.37179 |           0.10415 |         0.10154 |         0.12291 |          svm | BoxConstraint:      0.16622 |
|      |        |            |                   |                 |                 |              | KernelScale:         4.4901 |
|   53 | Accept |    0.25846 |            0.2444 |         0.10154 |         0.12291 |           nb | DistributionNames:   kernel |
|      |        |            |                   |                 |                 |              | Width:             0.079498 |
|   54 | Accept |    0.21154 |          0.074835 |         0.10154 |         0.12291 |          knn | NumNeighbors:             2 |
|   55 | Accept |    0.13846 |            12.173 |         0.10154 |         0.12291 |     ensemble | Method:                 Bag |
|      |        |            |                   |                 |                 |              | NumLearningCycles:      234 |
|      |        |            |                   |                 |                 |              | MinLeafSize:              8 |
|   56 | Accept |    0.36538 |           0.10958 |         0.10154 |         0.12291 |          svm | BoxConstraint:        271.6 |
|      |        |            |                   |                 |                 |              | KernelScale:          2.743 |
|   57 | Accept |    0.16615 |            11.482 |         0.10154 |         0.12291 |     ensemble | Method:          LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:      248 |
|      |        |            |                   |                 |                 |              | MinLeafSize:            117 |
|   58 | Accept |    0.37179 |          0.095419 |         0.10154 |         0.12291 |          svm | BoxConstraint:       7.5785 |
|      |        |            |                   |                 |                 |              | KernelScale:      0.0066815 |
|   59 | Accept |    0.37179 |          0.097469 |         0.10154 |         0.12291 |          svm | BoxConstraint:    0.0017765 |
|      |        |            |                   |                 |                 |              | KernelScale:        0.86786 |
|   60 | Accept |    0.37179 |           0.11284 |         0.10154 |         0.12291 |          svm | BoxConstraint:     0.011465 |
|      |        |            |                   |                 |                 |              | KernelScale:        0.02747 |
|=================================================================================================================================|
| Iter | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|=================================================================================================================================|
|   61 | Accept |    0.11692 |          0.077515 |         0.10154 |         0.12239 |         tree | MinLeafSize:             12 |
|   62 | Accept |    0.29167 |          0.091617 |         0.10154 |         0.12239 |          svm | BoxConstraint:       11.939 |
|      |        |            |                   |                 |                 |              | KernelScale:         11.002 |
|   63 | Accept |    0.21795 |          0.067171 |         0.10154 |         0.12239 |          knn | NumNeighbors:             6 |
|   64 | Accept |    0.18269 |          0.062887 |         0.10154 |         0.12239 |          knn | NumNeighbors:             3 |
|   65 | Accept |    0.12923 |          0.075704 |         0.10154 |         0.11989 |         tree | MinLeafSize:              3 |
|   66 | Accept |    0.16923 |          0.065889 |         0.10154 |         0.12048 |         tree | MinLeafSize:             56 |
|   67 | Accept |     0.1891 |          0.068215 |         0.10154 |         0.12048 |          knn | NumNeighbors:             1 |
|   68 | Accept |    0.13231 |            14.135 |         0.10154 |         0.12048 |     ensemble | Method:                 Bag |
|      |        |            |                   |                 |                 |              | NumLearningCycles:      270 |
|      |        |            |                   |                 |                 |              | MinLeafSize:              4 |
|   69 | Accept |    0.22769 |          0.060902 |         0.10154 |         0.12048 |           nb | DistributionNames:   normal |
|      |        |            |                   |                 |                 |              | Width:                  NaN |
|   70 | Accept |    0.37231 |           0.24511 |         0.10154 |         0.12048 |           nb | DistributionNames:   kernel |
|      |        |            |                   |                 |                 |              | Width:               1629.5 |
|=================================================================================================================================|
| Iter | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|=================================================================================================================================|
|   71 | Accept |    0.16923 |          0.069135 |         0.10154 |         0.11947 |         tree | MinLeafSize:             61 |
|   72 | Accept |    0.22769 |          0.060552 |         0.10154 |         0.11947 |           nb | DistributionNames:   normal |
|      |        |            |                   |                 |                 |              | Width:                  NaN |
|   73 | Accept |    0.16308 |            10.133 |         0.10154 |         0.11947 |     ensemble | Method:          LogitBoost |
|      |        |            |                   |                 |                 |              | NumLearningCycles:      217 |
|      |        |            |                   |                 |                 |              | MinLeafSize:             70 |
|   74 | Accept |    0.13231 |            13.055 |         0.10154 |         0.11947 |     ensemble | Method:                 Bag |
|      |        |            |                   |                 |                 |              | NumLearningCycles:      257 |
|      |        |            |                   |                 |                 |              | MinLeafSize:              2 |
|   75 | Accept |    0.21474 |          0.069312 |         0.10154 |         0.11947 |          knn | NumNeighbors:            49 |
|   76 | Accept |    0.13846 |          0.083714 |         0.10154 |          0.1214 |         tree | MinLeafSize:             25 |
|   77 | Accept |       0.12 |          0.069041 |         0.10154 |         0.11923 |         tree | MinLeafSize:              6 |
|   78 | Accept |    0.10154 |          0.077399 |         0.10154 |          0.1118 |         tree | MinLeafSize:              5 |
|   79 | Accept |       0.12 |          0.076269 |         0.10154 |         0.11007 |         tree | MinLeafSize:              4 |
|   80 | Accept |    0.10154 |           0.09325 |         0.10154 |         0.10878 |         tree | MinLeafSize:              5 |
|=================================================================================================================================|
| Iter | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|=================================================================================================================================|
|   81 | Accept |    0.10154 |          0.074541 |         0.10154 |         0.10737 |         tree | MinLeafSize:              5 |
|   82 | Accept |       0.12 |          0.069929 |         0.10154 |          0.1063 |         tree | MinLeafSize:              4 |
|   83 | Accept |    0.10154 |          0.072591 |         0.10154 |         0.10514 |         tree | MinLeafSize:              5 |
|   84 | Accept |    0.10154 |          0.071254 |         0.10154 |         0.10366 |         tree | MinLeafSize:              5 |
|   85 | Accept |    0.10154 |          0.077378 |         0.10154 |         0.10361 |         tree | MinLeafSize:              5 |
|   86 | Accept |    0.10154 |          0.070643 |         0.10154 |         0.10348 |         tree | MinLeafSize:              5 |
|   87 | Accept |       0.12 |          0.070551 |         0.10154 |         0.10286 |         tree | MinLeafSize:              4 |
|   88 | Accept |       0.12 |          0.078438 |         0.10154 |          0.1029 |         tree | MinLeafSize:              6 |
|   89 | Accept |    0.10154 |          0.072996 |         0.10154 |         0.10262 |         tree | MinLeafSize:              5 |
|   90 | Accept |    0.10154 |          0.078162 |         0.10154 |         0.10246 |         tree | MinLeafSize:              5 |
|=================================================================================================================================|
| Iter | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|=================================================================================================================================|
|   91 | Accept |    0.10154 |           0.07038 |         0.10154 |         0.10267 |         tree | MinLeafSize:              5 |
|   92 | Accept |    0.10154 |           0.07752 |         0.10154 |         0.10257 |         tree | MinLeafSize:              5 |
|   93 | Accept |    0.10154 |          0.076155 |         0.10154 |         0.10217 |         tree | MinLeafSize:              5 |
|   94 | Accept |    0.10154 |          0.075983 |         0.10154 |         0.10221 |         tree | MinLeafSize:              5 |
|   95 | Accept |    0.10154 |           0.07407 |         0.10154 |         0.10211 |         tree | MinLeafSize:              5 |
|   96 | Accept |    0.10154 |          0.080633 |         0.10154 |         0.10207 |         tree | MinLeafSize:              5 |
|   97 | Accept |    0.10154 |          0.086164 |         0.10154 |         0.10205 |         tree | MinLeafSize:              5 |
|   98 | Accept |    0.10154 |          0.080264 |         0.10154 |         0.10191 |         tree | MinLeafSize:              5 |
|   99 | Accept |    0.12308 |          0.076015 |         0.10154 |          0.1021 |         tree | MinLeafSize:             17 |
|  100 | Accept |    0.10154 |          0.074579 |         0.10154 |          0.1019 |         tree | MinLeafSize:              5 |
|=================================================================================================================================|
| Iter | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|=================================================================================================================================|
|  101 | Accept |    0.10154 |          0.072077 |         0.10154 |         0.10186 |         tree | MinLeafSize:              5 |
|  102 | Accept |    0.10154 |          0.071287 |         0.10154 |         0.10199 |         tree | MinLeafSize:              5 |
|  103 | Accept |    0.10154 |          0.080003 |         0.10154 |         0.10186 |         tree | MinLeafSize:              5 |
|  104 | Accept |       0.12 |           0.07462 |         0.10154 |         0.10189 |         tree | MinLeafSize:             13 |
|  105 | Accept |    0.10154 |          0.077244 |         0.10154 |         0.10198 |         tree | MinLeafSize:              5 |
|  106 | Accept |       0.12 |          0.080302 |         0.10154 |         0.10173 |         tree | MinLeafSize:              4 |
|  107 | Accept |    0.10154 |          0.071858 |         0.10154 |         0.10183 |         tree | MinLeafSize:              5 |
|  108 | Accept |    0.10154 |          0.076013 |         0.10154 |         0.10166 |         tree | MinLeafSize:              5 |
|  109 | Accept |    0.10154 |          0.079106 |         0.10154 |         0.10164 |         tree | MinLeafSize:              5 |
|  110 | Accept |    0.10154 |          0.075807 |         0.10154 |         0.10172 |         tree | MinLeafSize:              5 |
|=================================================================================================================================|
| Iter | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|=================================================================================================================================|
|  111 | Accept |    0.10154 |          0.076903 |         0.10154 |         0.10159 |         tree | MinLeafSize:              5 |
|  112 | Accept |    0.10154 |          0.077409 |         0.10154 |         0.10163 |         tree | MinLeafSize:              5 |
|  113 | Accept |    0.10154 |          0.069569 |         0.10154 |         0.10165 |         tree | MinLeafSize:              5 |
|  114 | Accept |    0.12308 |          0.076744 |         0.10154 |         0.10156 |         tree | MinLeafSize:             18 |
|  115 | Accept |    0.19551 |          0.097443 |         0.10154 |         0.10156 |          svm | BoxConstraint:       1.2977 |
|      |        |            |                   |                 |                 |              | KernelScale:         33.654 |
|  116 | Accept |    0.26603 |          0.099474 |         0.10154 |         0.10156 |          svm | BoxConstraint:     0.082725 |
|      |        |            |                   |                 |                 |              | KernelScale:         139.98 |
|  117 | Accept |    0.37179 |          0.077589 |         0.10154 |         0.10156 |          svm | BoxConstraint:    0.0065156 |
|      |        |            |                   |                 |                 |              | KernelScale:         559.53 |
|  118 | Accept |    0.15385 |           0.08281 |         0.10154 |         0.10156 |          svm | BoxConstraint:       8.5337 |
|      |        |            |                   |                 |                 |              | KernelScale:         482.07 |
|  119 | Accept |    0.20833 |          0.074271 |         0.10154 |         0.10156 |          svm | BoxConstraint:       5.1729 |
|      |        |            |                   |                 |                 |              | KernelScale:         980.38 |
|  120 | Accept |    0.17949 |          0.081488 |         0.10154 |         0.10156 |          svm | BoxConstraint:       6.8028 |
|      |        |            |                   |                 |                 |              | KernelScale:         578.14 |
|=================================================================================================================================|
| Iter | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|=================================================================================================================================|
|  121 | Accept |    0.22115 |          0.076901 |         0.10154 |         0.10156 |          svm | BoxConstraint:      0.19345 |
|      |        |            |                   |                 |                 |              | KernelScale:         367.75 |
|  122 | Accept |    0.17308 |          0.076171 |         0.10154 |         0.10156 |          svm | BoxConstraint:       10.344 |
|      |        |            |                   |                 |                 |              | KernelScale:         679.05 |
|  123 | Accept |      0.125 |           0.09187 |         0.10154 |         0.10156 |          svm | BoxConstraint:       72.626 |
|      |        |            |                   |                 |                 |              | KernelScale:         228.42 |
|  124 | Accept |    0.13462 |           0.15746 |         0.10154 |         0.10156 |          svm | BoxConstraint:        586.5 |
|      |        |            |                   |                 |                 |              | KernelScale:         176.02 |
|  125 | Accept |    0.13462 |          0.093366 |         0.10154 |         0.10156 |          svm | BoxConstraint:       83.771 |
|      |        |            |                   |                 |                 |              | KernelScale:         117.21 |
|  126 | Accept |    0.22436 |           0.10124 |         0.10154 |         0.10156 |          svm | BoxConstraint:       962.52 |
|      |        |            |                   |                 |                 |              | KernelScale:         20.898 |
|  127 | Accept |    0.15705 |            0.1133 |         0.10154 |         0.10156 |          svm | BoxConstraint:       29.038 |
|      |        |            |                   |                 |                 |              | KernelScale:         66.563 |
|  128 | Accept |    0.16346 |           0.10388 |         0.10154 |         0.10156 |          svm | BoxConstraint:        156.8 |
|      |        |            |                   |                 |                 |              | KernelScale:         62.775 |
|  129 | Accept |    0.13782 |          0.087555 |         0.10154 |         0.10156 |          svm | BoxConstraint:       94.357 |
|      |        |            |                   |                 |                 |              | KernelScale:         932.27 |
|  130 | Accept |    0.12821 |          0.093318 |         0.10154 |         0.10156 |          svm | BoxConstraint:       25.982 |
|      |        |            |                   |                 |                 |              | KernelScale:         247.06 |
|=================================================================================================================================|
| Iter | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|=================================================================================================================================|
|  131 | Accept |    0.13462 |           0.08648 |         0.10154 |         0.10156 |          svm | BoxConstraint:       16.818 |
|      |        |            |                   |                 |                 |              | KernelScale:         352.46 |
|  132 | Accept |    0.14103 |          0.090667 |         0.10154 |         0.10156 |          svm | BoxConstraint:       15.817 |
|      |        |            |                   |                 |                 |              | KernelScale:         130.15 |
|  133 | Accept |    0.12179 |          0.089208 |         0.10154 |         0.10156 |          svm | BoxConstraint:       74.054 |
|      |        |            |                   |                 |                 |              | KernelScale:         555.66 |
|  134 | Accept |    0.21474 |          0.082634 |         0.10154 |         0.10156 |          svm | BoxConstraint:      0.80097 |
|      |        |            |                   |                 |                 |              | KernelScale:         239.08 |
|  135 | Accept |      0.125 |          0.088947 |         0.10154 |         0.10156 |          svm | BoxConstraint:       47.244 |
|      |        |            |                   |                 |                 |              | KernelScale:         214.51 |
|  136 | Accept |    0.13141 |           0.07954 |         0.10154 |         0.10156 |          svm | BoxConstraint:       13.389 |
|      |        |            |                   |                 |                 |              | KernelScale:         145.55 |
|  137 | Accept |    0.13782 |          0.091167 |         0.10154 |         0.10156 |          svm | BoxConstraint:       60.755 |
|      |        |            |                   |                 |                 |              | KernelScale:         131.88 |
|  138 | Accept |      0.125 |          0.087338 |         0.10154 |         0.10156 |          svm | BoxConstraint:       11.454 |
|      |        |            |                   |                 |                 |              | KernelScale:         176.64 |
|  139 | Accept |      0.125 |          0.080567 |         0.10154 |         0.10156 |          svm | BoxConstraint:        11.85 |
|      |        |            |                   |                 |                 |              | KernelScale:         160.69 |
|  140 | Accept |    0.16667 |          0.083852 |         0.10154 |         0.10156 |          svm | BoxConstraint:       11.155 |
|      |        |            |                   |                 |                 |              | KernelScale:         652.28 |
|=================================================================================================================================|
| Iter | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|=================================================================================================================================|
|  141 | Accept |      0.125 |          0.089769 |         0.10154 |         0.10156 |          svm | BoxConstraint:       10.933 |
|      |        |            |                   |                 |                 |              | KernelScale:         172.97 |
|  142 | Accept |    0.21474 |            0.1003 |         0.10154 |         0.10156 |          svm | BoxConstraint:       16.172 |
|      |        |            |                   |                 |                 |              | KernelScale:         22.373 |
|  143 | Accept |    0.13782 |            0.0833 |         0.10154 |         0.10156 |          svm | BoxConstraint:       7.6332 |
|      |        |            |                   |                 |                 |              | KernelScale:         178.51 |
|  144 | Accept |    0.13462 |           0.10562 |         0.10154 |         0.10156 |          svm | BoxConstraint:       6.7646 |
|      |        |            |                   |                 |                 |              | KernelScale:         160.72 |
|  145 | Accept |    0.14103 |          0.076631 |         0.10154 |         0.10156 |          svm | BoxConstraint:       6.8617 |
|      |        |            |                   |                 |                 |              | KernelScale:         189.52 |
|  146 | Accept |    0.15385 |          0.082538 |         0.10154 |         0.10156 |          svm | BoxConstraint:       6.0384 |
|      |        |            |                   |                 |                 |              | KernelScale:         332.89 |
|  147 | Accept |    0.14423 |          0.077025 |         0.10154 |         0.10156 |          svm | BoxConstraint:       5.7255 |
|      |        |            |                   |                 |                 |              | KernelScale:         182.19 |
|  148 | Accept |    0.13782 |          0.089308 |         0.10154 |         0.10156 |          svm | BoxConstraint:       70.212 |
|      |        |            |                   |                 |                 |              | KernelScale:         818.46 |
|  149 | Accept |    0.14103 |           0.08348 |         0.10154 |         0.10156 |          svm | BoxConstraint:        5.493 |
|      |        |            |                   |                 |                 |              | KernelScale:         230.68 |
|  150 | Accept |    0.13782 |          0.079744 |         0.10154 |         0.10156 |          svm | BoxConstraint:       5.3564 |
|      |        |            |                   |                 |                 |              | KernelScale:         111.96 |

__________________________________________________________
Optimization completed.
Total iterations: 150
Total elapsed time: 835.2167 seconds
Total time for training and validation: 193.4979 seconds

Best observed learner is a tree model with:
	MinLeafSize:              5
Observed validation loss: 0.10154
Time for training and validation: 0.079656 seconds

Best estimated learner (returned model) is a tree model with:
	MinLeafSize:              5
Estimated validation loss: 0.10156
Estimated time for training and validation: 0.076205 seconds

Documentation for fitcauto display

Конечная модель, возвращенная fitcauto соответствует лучшему оцененному ученику. Перед возвращением модели функция переобучает ее, используя все обучающие данные (carsTrain), перечисленные Learner (или модель) тип и отображенные значения гиперзначений параметров.

Оценка эффективности тестового набора

Оцените эффективность модели на тестовом наборе.

testAccuracy = 1 - loss(Mdl,carsTest,'Origin')
testAccuracy = 0.9143
confusionchart(carsTest.Origin,predict(Mdl,carsTest))

Использование fitcauto чтобы автоматически выбрать классификационную модель с оптимизированными гиперпараметрами, данные предиктора и отклика, сохраненные в отдельных переменных.

Загрузка данных

Загрузите humanactivity набор данных. Этот набор данных содержит 24 075 наблюдений за пятью физическими действиями человека: Сидя (1), Стоя (2), Ходьба (3), Бегом (4) и Танцами (5). Каждое наблюдение имеет 60 функции, извлеченных из данных об ускорении, измеренных датчиками акселерометра смартфона. Переменная feat содержит матрицу данных предиктора из 60 функций для 24 075 наблюдений и переменную отклика actid содержит идентификаторы действия для наблюдений в виде целых чисел.

load humanactivity

Данные о разделах

Разделите данные на обучающие и тестовые наборы. Используйте 90% наблюдений для выбора модели и 10% наблюдений для валидации окончательной модели, возвращенной fitcauto. Использование cvpartition зарезервировать 10% наблюдений для проверки.

rng('default') % For reproducibility of the partition
c = cvpartition(actid,'Holdout',0.10);
trainingIndices = training(c); % Indices for the training set
XTrain = feat(trainingIndices,:);
YTrain = actid(trainingIndices);
testIndices = test(c); % Indices for the test set
XTest = feat(testIndices,:);
YTest = actid(testIndices);

Выполняйте fitcauto

Передайте обучающие данные в fitcauto. По умолчанию fitcauto определяет соответствующие типы модели (или обучающегося), чтобы попробовать, использует байесовскую оптимизацию, чтобы найти хорошие значения гиперзначений параметров для этих моделей, и возвращает обученную модель с наилучшей ожидаемой эффективностью. Задайте, чтобы запустить оптимизацию параллельно (требует Parallel Computing Toolbox™). Верните второй выход OptimizationResults который содержит детали байесовской оптимизации.

Ожидайте, что этот процесс выбора модели займет некоторое время. По умолчанию fitcauto предоставляет график оптимизации и итерационное отображение результатов оптимизации. Для получения дополнительной информации о том, как интерпретировать эти результаты, смотрите Подробное отображение.

options = struct('UseParallel',true);
[Mdl,OptimizationResults] = fitcauto(XTrain,YTrain,'HyperparameterOptimizationOptions',options);
Warning: It is recommended that you first standardize all numeric predictors when optimizing the Naive Bayes 'Width' parameter. Ignore this warning if you have done that.
Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).
Copying objective function to workers...
Done copying objective function to workers.
Learner types to explore: ensemble, knn, nb, svm, tree
Total iterations (MaxObjectiveEvaluations): 150
Total time (MaxTime): Inf
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|    1 |       6 | Best   |    0.28088 |            48.752 |         0.28088 |         0.28088 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.22686 |
|      |         |        |            |                   |                 |                 |              | KernelScale:          330.4 |
|    2 |       6 | Best   |   0.036459 |            51.455 |        0.036459 |        0.036459 |     ensemble | Method:          AdaBoostM2 |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      254 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:           1786 |
|      |         |        |            |                   |                 |                 |              | MaxNumSplits:            12 |
|    3 |       6 | Best   |   0.025845 |            5.1379 |        0.025845 |        0.025845 |         tree | MinLeafSize:             59 |
|    4 |       6 | Best   |   0.006415 |            60.999 |        0.006415 |        0.021738 |     ensemble | Method:          AdaBoostM2 |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      214 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:              5 |
|      |         |        |            |                   |                 |                 |              | MaxNumSplits:            23 |
|    5 |       6 | Accept |   0.025845 |            4.8823 |        0.006415 |        0.021738 |         tree | MinLeafSize:             59 |
|    6 |       6 | Accept |   0.017768 |            5.4601 |        0.006415 |        0.021738 |         tree | MinLeafSize:              9 |
|    7 |       6 | Accept |   0.050212 |            1.1024 |        0.006415 |        0.021738 |           nb | DistributionNames:   normal |
|      |         |        |            |                   |                 |                 |              | Width:                  NaN |
|    8 |       6 | Accept |   0.050212 |           0.64183 |        0.006415 |        0.021738 |           nb | DistributionNames:   normal |
|      |         |        |            |                   |                 |                 |              | Width:                  NaN |
|    9 |       6 | Accept |   0.019568 |            151.32 |        0.006415 |        0.021152 |     ensemble | Method:                 Bag |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      218 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:              2 |
|      |         |        |            |                   |                 |                 |              | MaxNumSplits:            63 |
|   10 |       6 | Accept |   0.026537 |            165.42 |        0.006415 |        0.022035 |     ensemble | Method:                 Bag |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      264 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:              7 |
|      |         |        |            |                   |                 |                 |              | MaxNumSplits:            36 |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|   11 |       6 | Accept |    0.59166 |            29.107 |        0.006415 |        0.022035 |           nb | DistributionNames:   kernel |
|      |         |        |            |                   |                 |                 |              | Width:           4.7212e-14 |
|   12 |       6 | Accept |   0.021645 |            50.626 |        0.006415 |        0.022122 |     ensemble | Method:          AdaBoostM2 |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      243 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:           1247 |
|      |         |        |            |                   |                 |                 |              | MaxNumSplits:            45 |
|   13 |       6 | Accept |   0.043567 |            24.583 |        0.006415 |        0.022122 |          knn | NumNeighbors:           144 |
|   14 |       6 | Accept |   0.028844 |            22.503 |        0.006415 |        0.022122 |          knn | NumNeighbors:            18 |
|   15 |       6 | Accept |    0.04389 |            157.12 |        0.006415 |        0.022122 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:     0.068467 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         117.01 |
|   16 |       6 | Accept |   0.024598 |            20.721 |        0.006415 |        0.022122 |          knn | NumNeighbors:             7 |
|   17 |       6 | Accept |    0.03009 |            20.969 |        0.006415 |        0.022122 |          knn | NumNeighbors:            27 |
|   18 |       6 | Accept |   0.016753 |            6.5065 |        0.006415 |        0.021547 |         tree | MinLeafSize:              2 |
|   19 |       6 | Accept |   0.040059 |            4.3496 |        0.006415 |        0.022122 |         tree | MinLeafSize:            166 |
|   20 |       6 | Accept |   0.060319 |            2.2673 |        0.006415 |        0.022122 |         tree | MinLeafSize:           1881 |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|   21 |       6 | Accept |   0.050212 |           0.97596 |        0.006415 |        0.022122 |           nb | DistributionNames:   normal |
|      |         |        |            |                   |                 |                 |              | Width:                  NaN |
|   22 |       6 | Accept |   0.036552 |            20.775 |        0.006415 |        0.022122 |          knn | NumNeighbors:            67 |
|   23 |       6 | Accept |   0.050212 |           0.55594 |        0.006415 |        0.022122 |           nb | DistributionNames:   normal |
|      |         |        |            |                   |                 |                 |              | Width:                  NaN |
|   24 |       6 | Accept |    0.11076 |            36.229 |        0.006415 |        0.022122 |          knn | NumNeighbors:          2637 |
|   25 |       6 | Accept |    0.27884 |            66.582 |        0.006415 |        0.024532 |     ensemble | Method:                 Bag |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      287 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:           4344 |
|      |         |        |            |                   |                 |                 |              | MaxNumSplits:            48 |
|   26 |       6 | Accept |    0.58127 |            31.861 |        0.006415 |        0.024532 |           nb | DistributionNames:   kernel |
|      |         |        |            |                   |                 |                 |              | Width:           1.6293e-06 |
|   27 |       6 | Accept |    0.01583 |            5.7511 |        0.006415 |        0.020656 |         tree | MinLeafSize:              1 |
|   28 |       6 | Accept |   0.069319 |             1.806 |        0.006415 |         0.02077 |         tree | MinLeafSize:           2284 |
|   29 |       6 | Accept |    0.59166 |            352.55 |        0.006415 |         0.02077 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:        790.4 |
|      |         |        |            |                   |                 |                 |              | KernelScale:       0.014348 |
|   30 |       6 | Accept |   0.043336 |            3.7865 |        0.006415 |        0.020133 |         tree | MinLeafSize:            432 |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|   31 |       6 | Accept |    0.10555 |            34.294 |        0.006415 |        0.020133 |          knn | NumNeighbors:          2430 |
|   32 |       6 | Accept |   0.021276 |             4.582 |        0.006415 |        0.018661 |         tree | MinLeafSize:             17 |
|   33 |       5 | Accept |   0.030829 |            159.57 |        0.006415 |        0.018642 |     ensemble | Method:                 Bag |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      288 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:             45 |
|      |         |        |            |                   |                 |                 |              | MaxNumSplits:            23 |
|   34 |       5 | Accept |   0.014307 |            49.903 |        0.006415 |        0.018642 |     ensemble | Method:          AdaBoostM2 |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      234 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:            587 |
|      |         |        |            |                   |                 |                 |              | MaxNumSplits:            11 |
|   35 |       5 | Accept |   0.050212 |             1.025 |        0.006415 |        0.018642 |           nb | DistributionNames:   normal |
|      |         |        |            |                   |                 |                 |              | Width:                  NaN |
|   36 |       6 | Accept |    0.74165 |            24.131 |        0.006415 |        0.018661 |     ensemble | Method:          AdaBoostM2 |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      217 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:           8856 |
|      |         |        |            |                   |                 |                 |              | MaxNumSplits:            36 |
|   37 |       6 | Accept |     0.4226 |            558.84 |        0.006415 |        0.018661 |           nb | DistributionNames:   kernel |
|      |         |        |            |                   |                 |                 |              | Width:               72.906 |
|   38 |       6 | Accept |    0.57615 |            317.96 |        0.006415 |        0.018661 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       2.2347 |
|      |         |        |            |                   |                 |                 |              | KernelScale:        0.16176 |
|   39 |       6 | Accept |    0.59166 |             26.64 |        0.006415 |        0.018661 |           nb | DistributionNames:   kernel |
|      |         |        |            |                   |                 |                 |              | Width:            1.191e-07 |
|   40 |       6 | Accept |   0.087087 |            30.271 |        0.006415 |        0.018661 |          knn | NumNeighbors:          1634 |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|   41 |       6 | Accept |    0.73985 |            551.47 |        0.006415 |        0.018661 |           nb | DistributionNames:   kernel |
|      |         |        |            |                   |                 |                 |              | Width:               1055.8 |
|   42 |       4 | Accept |   0.025983 |            146.08 |        0.006415 |        0.018661 |     ensemble | Method:                 Bag |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      234 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:             73 |
|      |         |        |            |                   |                 |                 |              | MaxNumSplits:            43 |
|   43 |       4 | Accept |    0.02566 |            146.73 |        0.006415 |        0.018661 |     ensemble | Method:                 Bag |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      234 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:             73 |
|      |         |        |            |                   |                 |                 |              | MaxNumSplits:            43 |
|   44 |       4 | Accept |   0.024922 |            124.65 |        0.006415 |        0.018661 |     ensemble | Method:                 Bag |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      206 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:              5 |
|      |         |        |            |                   |                 |                 |              | MaxNumSplits:            39 |
|   45 |       6 | Accept |   0.025891 |            23.638 |        0.006415 |        0.018661 |          knn | NumNeighbors:             6 |
|   46 |       5 | Accept |   0.025891 |            24.038 |        0.006415 |        0.018661 |          knn | NumNeighbors:             6 |
|   47 |       5 | Accept |   0.025891 |            23.646 |        0.006415 |        0.018661 |          knn | NumNeighbors:             6 |
|   48 |       6 | Accept |    0.03009 |            188.48 |        0.006415 |        0.018661 |     ensemble | Method:                 Bag |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      299 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:             31 |
|      |         |        |            |                   |                 |                 |              | MaxNumSplits:            25 |
|   49 |       6 | Accept |   0.017214 |            6.0889 |        0.006415 |        0.017935 |         tree | MinLeafSize:              4 |
|   50 |       6 | Accept |    0.01726 |            5.6027 |        0.006415 |        0.017303 |         tree | MinLeafSize:              5 |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|   51 |       6 | Accept |   0.037244 |             158.2 |        0.006415 |        0.017303 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       5.9571 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         840.87 |
|   52 |       6 | Accept |   0.046474 |            190.01 |        0.006415 |        0.017303 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       2.9119 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         12.771 |
|   53 |       6 | Accept |   0.032398 |            155.47 |        0.006415 |        0.017303 |     ensemble | Method:                 Bag |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      253 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:             14 |
|      |         |        |            |                   |                 |                 |              | MaxNumSplits:            22 |
|   54 |       6 | Accept |   0.054135 |            3.0156 |        0.006415 |        0.017093 |         tree | MinLeafSize:            783 |
|   55 |       6 | Accept |   0.049797 |            28.421 |        0.006415 |        0.017093 |          knn | NumNeighbors:           331 |
|   56 |       6 | Accept |   0.046566 |            27.524 |        0.006415 |        0.017093 |          knn | NumNeighbors:           193 |
|   57 |       6 | Accept |    0.36307 |            711.57 |        0.006415 |        0.017093 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:    0.0011107 |
|      |         |        |            |                   |                 |                 |              | KernelScale:        0.80966 |
|   58 |       6 | Accept |   0.022706 |            23.417 |        0.006415 |        0.017093 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       1.3505 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         127.55 |
|   59 |       6 | Accept |   0.028798 |            4.1232 |        0.006415 |         0.01733 |         tree | MinLeafSize:             84 |
|   60 |       6 | Accept |   0.041351 |            28.037 |        0.006415 |         0.01733 |          knn | NumNeighbors:           124 |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|   61 |       6 | Accept |   0.030044 |            26.265 |        0.006415 |         0.01733 |          knn | NumNeighbors:            26 |
|   62 |       6 | Accept |    0.11838 |            284.42 |        0.006415 |         0.01733 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:    0.0027874 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         33.944 |
|   63 |       6 | Accept |    0.47116 |            54.038 |        0.006415 |         0.01733 |           nb | DistributionNames:   kernel |
|      |         |        |            |                   |                 |                 |              | Width:           4.7553e-05 |
|   64 |       6 | Accept |    0.26574 |            104.86 |        0.006415 |         0.01733 |           nb | DistributionNames:   kernel |
|      |         |        |            |                   |                 |                 |              | Width:            0.0011441 |
|   65 |       6 | Accept |   0.050212 |           0.72243 |        0.006415 |         0.01733 |           nb | DistributionNames:   normal |
|      |         |        |            |                   |                 |                 |              | Width:                  NaN |
|   66 |       6 | Accept |    0.01726 |            5.6362 |        0.006415 |        0.016846 |         tree | MinLeafSize:              5 |
|   67 |       6 | Accept |   0.077072 |            268.17 |        0.006415 |        0.016846 |           nb | DistributionNames:   kernel |
|      |         |        |            |                   |                 |                 |              | Width:             0.026902 |
|   68 |       6 | Accept |   0.031613 |            25.909 |        0.006415 |        0.016846 |          knn | NumNeighbors:            33 |
|   69 |       6 | Accept |    0.02003 |            92.379 |        0.006415 |        0.016846 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       609.47 |
|      |         |        |            |                   |                 |                 |              | KernelScale:          39.88 |
|   70 |       6 | Accept |     0.1145 |            92.795 |        0.006415 |        0.016846 |     ensemble | Method:                 Bag |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      292 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:           3870 |
|      |         |        |            |                   |                 |                 |              | MaxNumSplits:            33 |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|   71 |       6 | Accept |   0.012968 |            53.299 |        0.006415 |        0.016846 |     ensemble | Method:          AdaBoostM2 |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      208 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:              5 |
|      |         |        |            |                   |                 |                 |              | MaxNumSplits:            10 |
|   72 |       6 | Accept |   0.011999 |             53.54 |        0.006415 |        0.016846 |     ensemble | Method:          AdaBoostM2 |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      215 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:              5 |
|      |         |        |            |                   |                 |                 |              | MaxNumSplits:            11 |
|   73 |       6 | Accept |   0.011999 |            50.887 |        0.006415 |        0.012076 |     ensemble | Method:          AdaBoostM2 |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      205 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:              2 |
|      |         |        |            |                   |                 |                 |              | MaxNumSplits:            11 |
|   74 |       6 | Accept |   0.039921 |            40.808 |        0.006415 |        0.012733 |     ensemble | Method:          AdaBoostM2 |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      200 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:           1921 |
|      |         |        |            |                   |                 |                 |              | MaxNumSplits:            11 |
|   75 |       6 | Accept |    0.04232 |            98.684 |        0.006415 |        0.012754 |     ensemble | Method:                 Bag |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      220 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:           1495 |
|      |         |        |            |                   |                 |                 |              | MaxNumSplits:            11 |
|   76 |       6 | Accept |   0.094702 |            397.88 |        0.006415 |        0.012754 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       671.76 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         4.6418 |
|   77 |       6 | Accept |   0.065165 |            44.801 |        0.006415 |        0.013179 |     ensemble | Method:          AdaBoostM2 |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      233 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:           2586 |
|      |         |        |            |                   |                 |                 |              | MaxNumSplits:            35 |
|   78 |       6 | Accept |    0.22503 |            164.64 |        0.006415 |        0.013179 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:        57.71 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         2.0632 |
|   79 |       6 | Accept |    0.03069 |             44.42 |        0.006415 |        0.013027 |     ensemble | Method:          AdaBoostM2 |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      213 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:           1619 |
|      |         |        |            |                   |                 |                 |              | MaxNumSplits:            95 |
|   80 |       6 | Accept |    0.11459 |             71.56 |        0.006415 |        0.012064 |     ensemble | Method:                 Bag |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      212 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:           2669 |
|      |         |        |            |                   |                 |                 |              | MaxNumSplits:            31 |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|   81 |       6 | Accept |   0.044582 |            41.462 |        0.006415 |        0.013176 |     ensemble | Method:          AdaBoostM2 |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      207 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:           2211 |
|      |         |        |            |                   |                 |                 |              | MaxNumSplits:            56 |
|   82 |       6 | Accept |   0.014722 |             223.7 |        0.006415 |        0.013176 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       832.84 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         392.65 |
|   83 |       6 | Accept |   0.018322 |             23.34 |        0.006415 |        0.013176 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       322.92 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         542.76 |
|   84 |       6 | Accept |   0.016984 |            28.833 |        0.006415 |        0.013176 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       727.84 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         558.25 |
|   85 |       6 | Accept |    0.59166 |            2135.3 |        0.006415 |        0.013176 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:     0.045413 |
|      |         |        |            |                   |                 |                 |              | KernelScale:      0.0034709 |
|   86 |       6 | Accept |   0.012461 |            39.005 |        0.006415 |        0.013176 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       806.52 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         244.64 |
|   87 |       6 | Accept |   0.016753 |            22.649 |        0.006415 |        0.013176 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       173.38 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         329.41 |
|   88 |       6 | Accept |   0.016845 |            28.292 |        0.006415 |        0.013176 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       242.37 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         62.644 |
|   89 |       6 | Accept |   0.016799 |            20.771 |        0.006415 |        0.013176 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       80.674 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         242.97 |
|   90 |       6 | Accept |   0.041259 |            175.27 |        0.006415 |        0.013176 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       2.0147 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         549.95 |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|   91 |       6 | Accept |   0.017953 |            19.778 |        0.006415 |        0.013176 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       63.367 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         263.72 |
|   92 |       6 | Accept |   0.019568 |            19.245 |        0.006415 |        0.013176 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       55.612 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         344.11 |
|   93 |       6 | Accept |   0.016061 |            19.511 |        0.006415 |        0.013176 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       60.019 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         185.49 |
|   94 |       6 | Accept |    0.11847 |             149.5 |        0.006415 |        0.013176 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       770.37 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         3.1188 |
|   95 |       6 | Accept |   0.017953 |            18.428 |        0.006415 |        0.013176 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:        43.94 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         234.89 |
|   96 |       6 | Accept |   0.025106 |            25.204 |        0.006415 |        0.013176 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       2.1294 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         237.71 |
|   97 |       6 | Accept |   0.011676 |            70.358 |        0.006415 |        0.012446 |     ensemble | Method:          AdaBoostM2 |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      283 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:              4 |
|      |         |        |            |                   |                 |                 |              | MaxNumSplits:            10 |
|   98 |       6 | Accept |   0.031983 |            37.179 |        0.006415 |        0.012446 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:        1.832 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         449.73 |
|   99 |       6 | Accept |  0.0097379 |            76.639 |        0.006415 |        0.011402 |     ensemble | Method:          AdaBoostM2 |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      299 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:              4 |
|      |         |        |            |                   |                 |                 |              | MaxNumSplits:            12 |
|  100 |       6 | Accept |    0.22416 |            684.65 |        0.006415 |        0.011402 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       632.44 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         1.8647 |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|  101 |       6 | Accept |    0.11478 |            87.263 |        0.006415 |        0.011913 |     ensemble | Method:                 Bag |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      272 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:           3176 |
|      |         |        |            |                   |                 |                 |              | MaxNumSplits:            54 |
|  102 |       6 | Accept |  0.0081687 |            75.177 |        0.006415 |         0.01045 |     ensemble | Method:          AdaBoostM2 |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      291 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:              6 |
|      |         |        |            |                   |                 |                 |              | MaxNumSplits:            14 |
|  103 |       6 | Accept |   0.010753 |             70.01 |        0.006415 |        0.010258 |     ensemble | Method:          AdaBoostM2 |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      284 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:              1 |
|      |         |        |            |                   |                 |                 |              | MaxNumSplits:            11 |
|  104 |       6 | Accept |    0.36076 |                77 |        0.006415 |        0.010258 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:    0.0054235 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         149.67 |
|  105 |       6 | Accept |  0.0084456 |            62.748 |        0.006415 |       0.0092051 |     ensemble | Method:          AdaBoostM2 |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      214 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:              3 |
|      |         |        |            |                   |                 |                 |              | MaxNumSplits:            16 |
|  106 |       6 | Accept |   0.012738 |             32.34 |        0.006415 |       0.0092051 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       529.51 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         161.83 |
|  107 |       6 | Accept |   0.031521 |            41.482 |        0.006415 |       0.0092051 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       0.6738 |
|      |         |        |            |                   |                 |                 |              | KernelScale:          289.2 |
|  108 |       6 | Accept |   0.021368 |            38.604 |        0.006415 |       0.0092051 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       567.35 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         36.573 |
|  109 |       6 | Accept |   0.050212 |           0.59557 |        0.006415 |       0.0092051 |           nb | DistributionNames:   normal |
|      |         |        |            |                   |                 |                 |              | Width:                  NaN |
|  110 |       6 | Accept |    0.57883 |            127.15 |        0.006415 |       0.0092051 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:    0.0011506 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         211.98 |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|  111 |       6 | Accept |   0.050212 |             0.685 |        0.006415 |       0.0092051 |           nb | DistributionNames:   normal |
|      |         |        |            |                   |                 |                 |              | Width:                  NaN |
|  112 |       6 | Accept |   0.029583 |            33.504 |        0.006415 |       0.0092051 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.49417 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         209.72 |
|  113 |       6 | Accept |   0.012138 |            41.159 |        0.006415 |       0.0092051 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       967.85 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         153.85 |
|  114 |       6 | Accept |   0.030921 |            38.482 |        0.006415 |       0.0092051 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.57771 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         262.15 |
|  115 |       6 | Accept |     0.1295 |            52.128 |        0.006415 |       0.0092051 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.35331 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         329.77 |
|  116 |       6 | Accept |   0.028475 |            33.553 |        0.006415 |       0.0092051 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.37306 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         157.01 |
|  117 |       6 | Accept |   0.050212 |           0.62316 |        0.006415 |       0.0092051 |           nb | DistributionNames:   normal |
|      |         |        |            |                   |                 |                 |              | Width:                  NaN |
|  118 |       6 | Accept |   0.030737 |                37 |        0.006415 |       0.0092051 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.37996 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         204.24 |
|  119 |       6 | Accept |   0.021229 |             36.97 |        0.006415 |       0.0092051 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       803.51 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         38.271 |
|  120 |       6 | Accept |   0.015184 |            24.004 |        0.006415 |       0.0092051 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       119.72 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         145.99 |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|  121 |       6 | Accept |    0.06955 |            101.38 |        0.006415 |       0.0092051 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       39.152 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         8.5572 |
|  122 |       6 | Accept |   0.028291 |            32.637 |        0.006415 |       0.0092051 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.32264 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         134.73 |
|  123 |       6 | Accept |   0.041951 |             51.65 |        0.006415 |       0.0092051 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.28203 |
|      |         |        |            |                   |                 |                 |              | KernelScale:          237.1 |
|  124 |       6 | Accept |   0.039921 |            216.38 |        0.006415 |       0.0092051 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:     0.049329 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         190.24 |
|  125 |       6 | Accept |   0.048828 |            91.888 |        0.006415 |       0.0092051 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       180.12 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         12.235 |
|  126 |       6 | Accept |   0.030644 |            38.563 |        0.006415 |       0.0092051 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.25725 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         171.19 |
|  127 |       6 | Accept |   0.029537 |            37.409 |        0.006415 |       0.0092051 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.25269 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         145.85 |
|  128 |       6 | Accept |    0.02949 |            31.222 |        0.006415 |       0.0092051 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.24034 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         59.755 |
|  129 |       6 | Accept |   0.029537 |            130.19 |        0.006415 |       0.0092051 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       76.533 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         22.982 |
|  130 |       6 | Accept |   0.094702 |            174.14 |        0.006415 |       0.0092051 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:     0.043666 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         25.411 |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|  131 |       6 | Accept |   0.037382 |            46.207 |        0.006415 |       0.0092051 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.23867 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         204.62 |
|  132 |       6 | Accept |   0.022152 |            40.588 |        0.006415 |       0.0092051 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       887.62 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         32.987 |
|  133 |       6 | Accept |   0.032629 |            32.651 |        0.006415 |       0.0092051 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.22511 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         52.294 |
|  134 |       6 | Accept |    0.02806 |            131.12 |        0.006415 |       0.0092051 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.20346 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         122.85 |
|  135 |       6 | Accept |    0.59166 |              3480 |        0.006415 |       0.0092051 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       658.37 |
|      |         |        |            |                   |                 |                 |              | KernelScale:      0.0016161 |
|  136 |       6 | Accept |    0.59166 |            3481.3 |        0.006415 |       0.0092051 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       658.37 |
|      |         |        |            |                   |                 |                 |              | KernelScale:      0.0016161 |
|  137 |       6 | Accept |   0.032121 |            44.172 |        0.006415 |       0.0092051 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.20648 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         162.33 |
|  138 |       6 | Accept |    0.30755 |              71.9 |        0.006415 |       0.0092051 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:     0.015886 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         120.23 |
|  139 |       6 | Accept |   0.040936 |            233.89 |        0.006415 |       0.0092051 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:     0.046614 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         213.78 |
|  140 |       5 | Accept |   0.040521 |            224.72 |        0.006415 |       0.0092051 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:     0.043998 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         195.58 |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|  141 |       5 | Accept |    0.22208 |            64.659 |        0.006415 |       0.0092051 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:     0.049755 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         151.01 |
|  142 |       6 | Accept |   0.029444 |            30.014 |        0.006415 |       0.0092051 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.21789 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         64.023 |
|  143 |       6 | Accept |   0.046013 |            49.025 |        0.006415 |       0.0092051 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.14805 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         178.98 |
|  144 |       6 | Accept |   0.013291 |            42.726 |        0.006415 |       0.0092051 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       960.14 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         334.83 |
|  145 |       6 | Accept |    0.59166 |            3493.5 |        0.006415 |       0.0092051 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       17.982 |
|      |         |        |            |                   |                 |                 |              | KernelScale:      0.0043756 |
|  146 |       6 | Accept |   0.089533 |            189.71 |        0.006415 |       0.0092051 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       0.2326 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         15.411 |
|  147 |       6 | Accept |    0.03369 |            49.586 |        0.006415 |       0.0092051 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.21482 |
|      |         |        |            |                   |                 |                 |              | KernelScale:          180.5 |
|  148 |       6 | Accept |   0.013384 |            42.876 |        0.006415 |       0.0092051 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       920.16 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         334.75 |
|  149 |       6 | Accept |   0.027368 |             117.6 |        0.006415 |       0.0092051 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.22783 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         105.59 |
|  150 |       6 | Accept |   0.041674 |            234.61 |        0.006415 |       0.0092051 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:     0.032335 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         182.17 |

__________________________________________________________
Optimization completed.
Total iterations: 150
Total elapsed time: 4534.2478 seconds
Total time for training and validation: 24883.8563 seconds

Best observed learner is an ensemble model with:
	Method:          AdaBoostM2
	NumLearningCycles:      214
	MinLeafSize:              5
	MaxNumSplits:            23
Observed validation loss: 0.006415
Time for training and validation: 60.9987 seconds

Best estimated learner (returned model) is an ensemble model with:
	Method:          AdaBoostM2
	NumLearningCycles:      214
	MinLeafSize:              3
	MaxNumSplits:            16
Estimated validation loss: 0.0092051
Estimated time for training and validation: 57.8146 seconds

Documentation for fitcauto display

Конечная модель, возвращенная fitcauto соответствует лучшему оцененному ученику. Перед возвращением модели функция переобучает ее, используя все обучающие данные (XTrain и YTrain), перечисленные Learner (или модель) тип и отображенные значения гиперзначений параметров.

Оценка эффективности тестового набора

Оцените окончательную производительность модели на наборе тестовых данных.

testAccuracy = 1 - loss(Mdl,XTest,YTest)
testAccuracy = 0.9917

Итоговая модель правильно классифицирует более 99% наблюдений.

Использование fitcauto чтобы автоматически выбрать классификационную модель с оптимизированными гиперпараметрами, данные предиктора и отклика, сохраненные в таблице. Перед передачей данных в fitcauto, выполните выбор признаков, чтобы удалить неважные предикторы из набора данных.

Загрузка и разбиение данных

Прочтите образец файла CreditRating_Historical.dat в таблицу. Данные предиктора состоят из финансовых коэффициентов и отраслевой информации для списка корпоративных клиентов. Переменная ответа состоит из кредитных рейтингов, присвоенных рейтинговым агентством. Предварительный просмотр первых нескольких строк набора данных.

creditrating = readtable('CreditRating_Historical.dat');
head(creditrating)
ans=8×8 table
     ID      WC_TA     RE_TA     EBIT_TA    MVE_BVTD    S_TA     Industry    Rating 
    _____    ______    ______    _______    ________    _____    ________    _______

    62394     0.013     0.104     0.036      0.447      0.142        3       {'BB' }
    48608     0.232     0.335     0.062      1.969      0.281        8       {'A'  }
    42444     0.311     0.367     0.074      1.935      0.366        1       {'A'  }
    48631     0.194     0.263     0.062      1.017      0.228        4       {'BBB'}
    43768     0.121     0.413     0.057      3.647      0.466       12       {'AAA'}
    39255    -0.117    -0.799      0.01      0.179      0.082        4       {'CCC'}
    62236     0.087     0.158     0.049      0.816      0.324        2       {'BBB'}
    39354     0.005     0.181     0.034      2.597      0.388        7       {'AA' }

Потому что каждое значение в ID переменная является уникальным идентификатором клиента, то есть length(unique(creditrating.ID)) равно количеству наблюдений в creditrating, а ID переменная является плохим предиктором. Удалите ID переменная из таблицы и преобразуйте Industry переменная к categorical переменная.

creditrating = removevars(creditrating,'ID');
creditrating.Industry = categorical(creditrating.Industry);

Разделите данные на обучающие и тестовые наборы. Используйте приблизительно 85% наблюдений для процесса выбора модели и настройки гиперпараметра и 15% наблюдений, чтобы проверить эффективность конечной модели, возвращенной fitcauto на новых данных. Использование cvpartition для разбиения данных на разделы.

rng('default') % For reproducibility of the partition
c = cvpartition(creditrating.Rating,'Holdout',0.15);
trainingIndices = training(c); % Indices for the training set
testIndices = test(c); % Indices for the test set
creditTrain = creditrating(trainingIndices,:);
creditTest = creditrating(testIndices,:);

Выполните выбор признаков

Перед передачей обучающих данных в fitcauto, найти важные предикторы при помощи fscchi2 функция. Визуализируйте счета предиктора при помощи bar функция. Потому что некоторые счета могут быть Inf, и bar отбрасывает Inf значения, сначала постройте график конечных счетов, а затем постройте график конечного представления Inf счета другого цвета.

[idx,scores] = fscchi2(creditTrain,'Rating');
bar(scores(idx)) % Represents finite scores
hold on
veryImportant = isinf(scores);
finiteMax = max(scores(~veryImportant));
bar(finiteMax*veryImportant(idx)) % Represents Inf scores
hold off
xticklabels(strrep(creditTrain.Properties.VariableNames(idx),'_','\_'))
xtickangle(45)
legend({'Finite Scores','Inf Scores'})

Заметьте, что Industry предиктор имеет низкий счет, соответствующий p-значению, которое больше 0,05, что указывает на то, что Industry возможно, не является важной функцией. Удалите Industry функция из наборов обучающих и тестовых данных.

creditTrain = removevars(creditTrain,'Industry');
creditTest = removevars(creditTest,'Industry');

Выполняйте fitcauto

Передайте обучающие данные в fitcauto. Функция использует байесовскую оптимизацию, чтобы выбрать модели и их значения гиперзначений параметров, и возвращает обученную модель Mdl с наилучшей ожидаемой эффективностью. Задайте, чтобы попробовать все доступные типы учащихся и запустить оптимизацию параллельно (требует Parallel Computing Toolbox™). Верните второй выход Results который содержит детали байесовской оптимизации.

Ожидайте, что этот процесс займет некоторое время. По умолчанию fitcauto предоставляет график оптимизации и итерационное отображение результатов оптимизации. Для получения дополнительной информации о том, как интерпретировать эти результаты, смотрите Подробное отображение.

options = struct('UseParallel',true);
[Mdl,Results] = fitcauto(creditTrain,'Rating', ...
    'Learners','all','HyperparameterOptimizationOptions',options);
Warning: It is recommended that you first standardize all numeric predictors when optimizing the Naive Bayes 'Width' parameter. Ignore this warning if you have done that.
Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).
Copying objective function to workers...
Done copying objective function to workers.
Learner types to explore: discr, ensemble, kernel, knn, linear, nb, svm, tree
Total iterations (MaxObjectiveEvaluations): 240
Total time (MaxTime): Inf
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|    1 |       6 | Best   |    0.42716 |            3.0379 |         0.42716 |         0.42716 |        discr | Delta:           0.00046441 |
|      |         |        |            |                   |                 |                 |              | Gamma:               0.2485 |
|    2 |       4 | Accept |    0.74185 |            4.7899 |         0.24948 |         0.29794 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.48455 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         354.44 |
|    3 |       4 | Best   |    0.24948 |            5.0813 |         0.24948 |         0.29794 |       linear | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | Lambda:          6.3551e-08 |
|      |         |        |            |                   |                 |                 |              | Learner:           logistic |
|    4 |       4 | Accept |    0.29794 |            3.7295 |         0.24948 |         0.29794 |     ensemble | Method:          AdaBoostM2 |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:       12 |
|      |         |        |            |                   |                 |                 |              | LearnRate:         0.063776 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:            277 |
|    5 |       3 | Accept |    0.25097 |            9.2655 |         0.24948 |         0.25067 |       kernel | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | KernelScale:         7.8433 |
|      |         |        |            |                   |                 |                 |              | Lambda:          1.4468e-06 |
|    6 |       3 | Accept |    0.25067 |           0.81139 |         0.24948 |         0.25067 |          knn | NumNeighbors:           105 |
|      |         |        |            |                   |                 |                 |              | Distance:         minkowski |
|    7 |       6 | Accept |    0.52917 |            2.3362 |         0.24948 |         0.25067 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:     0.002417 |
|      |         |        |            |                   |                 |                 |              | KernelScale:          356.9 |
|    8 |       3 | Accept |    0.55818 |           0.63908 |         0.24948 |         0.25067 |        discr | Delta:              0.98612 |
|      |         |        |            |                   |                 |                 |              | Gamma:              0.86519 |
|    9 |       3 | Accept |     0.3781 |            1.6777 |         0.24948 |         0.25067 |       linear | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | Lambda:          1.0412e-06 |
|      |         |        |            |                   |                 |                 |              | Learner:           logistic |
|   10 |       3 | Accept |    0.43225 |           0.80766 |         0.24948 |         0.25067 |        discr | Delta:           0.00013711 |
|      |         |        |            |                   |                 |                 |              | Gamma:              0.60585 |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|   11 |       3 | Accept |    0.47712 |            3.3756 |         0.24948 |         0.25067 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       2.7347 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         24.465 |
|   12 |       6 | Accept |    0.25695 |            2.3709 |         0.24948 |         0.25067 |           nb | DistributionNames:   kernel |
|      |         |        |            |                   |                 |                 |              | Width:             0.057566 |
|   13 |       4 | Accept |    0.26413 |           0.49941 |         0.24379 |         0.25067 |         tree | MinLeafSize:             30 |
|   14 |       4 | Accept |    0.42327 |           0.85101 |         0.24379 |         0.25067 |          knn | NumNeighbors:            56 |
|      |         |        |            |                   |                 |                 |              | Distance:            cosine |
|   15 |       4 | Best   |    0.24379 |            1.8084 |         0.24379 |         0.25067 |       linear | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | Lambda:          5.9172e-05 |
|      |         |        |            |                   |                 |                 |              | Learner:                svm |
|   16 |       3 | Accept |    0.81544 |            4.9586 |         0.24379 |         0.25067 |       kernel | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | KernelScale:      0.0043375 |
|      |         |        |            |                   |                 |                 |              | Lambda:           0.0023789 |
|   17 |       3 | Accept |    0.45169 |           0.96723 |         0.24379 |         0.25067 |       linear | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | Lambda:           0.0028505 |
|      |         |        |            |                   |                 |                 |              | Learner:                svm |
|   18 |       6 | Accept |    0.33712 |           0.19972 |         0.24379 |         0.25695 |          knn | NumNeighbors:             1 |
|      |         |        |            |                   |                 |                 |              | Distance:         cityblock |
|   19 |       3 | Accept |     0.4834 |           0.38951 |         0.24379 |         0.25695 |          knn | NumNeighbors:            72 |
|      |         |        |            |                   |                 |                 |              | Distance:       correlation |
|   20 |       3 | Accept |    0.46336 |           0.78881 |         0.24379 |         0.25695 |       linear | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | Lambda:           0.0075732 |
|      |         |        |            |                   |                 |                 |              | Learner:                svm |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|   21 |       3 | Accept |    0.82082 |            2.9223 |         0.24379 |         0.25695 |       kernel | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | KernelScale:      0.0042587 |
|      |         |        |            |                   |                 |                 |              | Lambda:           0.0014754 |
|   22 |       3 | Accept |    0.61292 |            1.8557 |         0.24379 |         0.25695 |     ensemble | Method:          AdaBoostM2 |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:       13 |
|      |         |        |            |                   |                 |                 |              | LearnRate:         0.055349 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:            910 |
|   23 |       6 | Accept |    0.43255 |           0.68689 |         0.24379 |         0.25695 |        discr | Delta:             0.016844 |
|      |         |        |            |                   |                 |                 |              | Gamma:              0.64466 |
|   24 |       4 | Accept |    0.28866 |            1.9017 |         0.24379 |         0.25695 |     ensemble | Method:          AdaBoostM2 |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:       10 |
|      |         |        |            |                   |                 |                 |              | LearnRate:          0.11662 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:            181 |
|   25 |       4 | Accept |    0.74185 |            1.3546 |         0.24379 |         0.25695 |          knn | NumNeighbors:          1314 |
|      |         |        |            |                   |                 |                 |              | Distance:           hamming |
|   26 |       4 | Accept |    0.42746 |           0.69002 |         0.24379 |         0.25695 |        discr | Delta:           2.2544e-06 |
|      |         |        |            |                   |                 |                 |              | Gamma:              0.87275 |
|   27 |       3 | Accept |    0.25606 |            12.143 |         0.24379 |         0.25498 |     ensemble | Method:          AdaBoostM2 |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      132 |
|      |         |        |            |                   |                 |                 |              | LearnRate:          0.92674 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:            127 |
|   28 |       3 | Accept |    0.25366 |            2.4732 |         0.24379 |         0.25498 |           nb | DistributionNames:   kernel |
|      |         |        |            |                   |                 |                 |              | Width:              0.10033 |
|   29 |       6 | Accept |    0.66796 |           0.22938 |         0.24379 |         0.25498 |          knn | NumNeighbors:            77 |
|      |         |        |            |                   |                 |                 |              | Distance:           jaccard |
|   30 |       4 | Accept |    0.69488 |            1.9352 |           0.242 |         0.25498 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       8.4886 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         192.19 |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|   31 |       4 | Best   |      0.242 |            1.9467 |           0.242 |         0.25498 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:        5.425 |
|      |         |        |            |                   |                 |                 |              | KernelScale:          2.434 |
|   32 |       4 | Accept |    0.32306 |           0.48104 |           0.242 |         0.25498 |         tree | MinLeafSize:              2 |
|   33 |       4 | Accept |    0.43225 |           0.10463 |           0.242 |         0.25498 |        discr | Delta:           0.00015292 |
|      |         |        |            |                   |                 |                 |              | Gamma:              0.51045 |
|   34 |       4 | Accept |    0.32994 |            0.2065 |           0.242 |         0.25498 |         tree | MinLeafSize:              3 |
|   35 |       6 | Accept |    0.53814 |            2.8748 |           0.242 |         0.25498 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       6.8148 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         382.11 |
|   36 |       4 | Accept |    0.24529 |            105.62 |           0.242 |         0.25498 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.25488 |
|      |         |        |            |                   |                 |                 |              | KernelScale:      0.0037823 |
|   37 |       4 | Accept |    0.53814 |            3.3272 |           0.242 |         0.25498 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       6.8148 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         382.11 |
|   38 |       4 | Accept |    0.53814 |            3.8593 |           0.242 |         0.25498 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       6.8148 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         382.11 |
|   39 |       4 | Accept |    0.25965 |            14.211 |           0.242 |         0.25498 |     ensemble | Method:          AdaBoostM2 |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      150 |
|      |         |        |            |                   |                 |                 |              | LearnRate:         0.014842 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:             21 |
|   40 |       5 | Accept |    0.42656 |           0.16731 |           0.242 |         0.25498 |        discr | Delta:            0.0020866 |
|      |         |        |            |                   |                 |                 |              | Gamma:             0.091054 |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|   41 |       5 | Accept |    0.42656 |           0.11476 |           0.242 |         0.25498 |        discr | Delta:            0.0020866 |
|      |         |        |            |                   |                 |                 |              | Gamma:             0.091054 |
|   42 |       4 | Accept |     0.2767 |            21.389 |           0.242 |         0.25498 |     ensemble | Method:          AdaBoostM2 |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      221 |
|      |         |        |            |                   |                 |                 |              | LearnRate:        0.0028588 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:              1 |
|   43 |       4 | Accept |    0.29973 |            0.1848 |           0.242 |         0.25498 |         tree | MinLeafSize:              7 |
|   44 |       4 | Accept |    0.25935 |            20.084 |           0.242 |         0.25498 |     ensemble | Method:                 Bag |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      304 |
|      |         |        |            |                   |                 |                 |              | LearnRate:              NaN |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:            100 |
|   45 |       3 | Accept |    0.24499 |            6.5071 |           0.242 |         0.26328 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:     0.019387 |
|      |         |        |            |                   |                 |                 |              | KernelScale:      0.0047515 |
|   46 |       3 | Accept |    0.28059 |           0.19378 |           0.242 |         0.26328 |           nb | DistributionNames:   normal |
|      |         |        |            |                   |                 |                 |              | Width:                  NaN |
|   47 |       6 | Accept |    0.27281 |           0.13181 |           0.242 |         0.26328 |          knn | NumNeighbors:             8 |
|      |         |        |            |                   |                 |                 |              | Distance:         chebychev |
|   48 |       3 | Accept |     0.2429 |            1.5474 |           0.242 |         0.26328 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.16719 |
|      |         |        |            |                   |                 |                 |              | KernelScale:        0.11257 |
|   49 |       3 | Accept |     0.2423 |            1.5219 |           0.242 |         0.26328 |       linear | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | Lambda:            4.28e-07 |
|      |         |        |            |                   |                 |                 |              | Learner:                svm |
|   50 |       3 | Accept |    0.67125 |           0.68464 |           0.242 |         0.26328 |          knn | NumNeighbors:            86 |
|      |         |        |            |                   |                 |                 |              | Distance:           jaccard |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|   51 |       3 | Accept |    0.46485 |            0.8417 |           0.242 |         0.26328 |         tree | MinLeafSize:            645 |
|   52 |       6 | Accept |    0.63147 |            3.1926 |           0.242 |         0.26328 |       kernel | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | KernelScale:          176.2 |
|      |         |        |            |                   |                 |                 |              | Lambda:          2.3903e-06 |
|   53 |       4 | Accept |    0.37571 |           0.11086 |           0.242 |         0.26706 |         tree | MinLeafSize:            473 |
|   54 |       4 | Accept |    0.29136 |           0.43908 |           0.242 |         0.26706 |          knn | NumNeighbors:           354 |
|      |         |        |            |                   |                 |                 |              | Distance:         euclidean |
|   55 |       4 | Accept |    0.28059 |           0.50642 |           0.242 |         0.26706 |           nb | DistributionNames:   normal |
|      |         |        |            |                   |                 |                 |              | Width:                  NaN |
|   56 |       3 | Accept |    0.36375 |            5.2617 |           0.242 |         0.26706 |       kernel | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | KernelScale:         28.598 |
|      |         |        |            |                   |                 |                 |              | Lambda:          8.3238e-05 |
|   57 |       3 | Accept |    0.27251 |           0.13425 |           0.242 |         0.26706 |         tree | MinLeafSize:             20 |
|   58 |       6 | Accept |    0.43225 |          0.083255 |           0.242 |         0.26706 |        discr | Delta:             0.021467 |
|      |         |        |            |                   |                 |                 |              | Gamma:              0.66016 |
|   59 |       3 | Accept |    0.28059 |           0.10921 |           0.242 |         0.26106 |           nb | DistributionNames:   normal |
|      |         |        |            |                   |                 |                 |              | Width:                  NaN |
|   60 |       3 | Accept |    0.42537 |           0.15885 |           0.242 |         0.26106 |        discr | Delta:             0.001728 |
|      |         |        |            |                   |                 |                 |              | Gamma:              0.89471 |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|   61 |       3 | Accept |    0.81484 |            2.9209 |           0.242 |         0.26106 |       kernel | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | KernelScale:      0.0063987 |
|      |         |        |            |                   |                 |                 |              | Lambda:           0.0075855 |
|   62 |       3 | Accept |    0.24948 |            2.4493 |           0.242 |         0.26106 |       linear | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | Lambda:          1.3237e-07 |
|      |         |        |            |                   |                 |                 |              | Learner:           logistic |
|   63 |       6 | Accept |    0.68531 |           0.40944 |           0.242 |         0.26106 |          knn | NumNeighbors:           260 |
|      |         |        |            |                   |                 |                 |              | Distance:           jaccard |
|   64 |       3 | Accept |    0.32426 |            9.8071 |           0.242 |         0.26007 |     ensemble | Method:            RUSBoost |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      132 |
|      |         |        |            |                   |                 |                 |              | LearnRate:        0.0014516 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:            104 |
|   65 |       3 | Accept |    0.55369 |           0.69919 |           0.242 |         0.26007 |          knn | NumNeighbors:           615 |
|      |         |        |            |                   |                 |                 |              | Distance:       correlation |
|   66 |       3 | Accept |    0.24319 |            1.5742 |           0.242 |         0.26007 |       linear | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | Lambda:          4.3001e-09 |
|      |         |        |            |                   |                 |                 |              | Learner:                svm |
|   67 |       3 | Accept |    0.70894 |            1.9822 |           0.242 |         0.26007 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.45564 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         51.195 |
|   68 |       6 | Accept |    0.46485 |           0.17082 |           0.242 |         0.26007 |         tree | MinLeafSize:            611 |
|   69 |       5 | Accept |    0.74185 |            2.1172 |           0.242 |         0.26007 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.94197 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         524.56 |
|   70 |       5 | Accept |    0.83548 |            6.3585 |           0.242 |         0.26007 |       kernel | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | KernelScale:      0.0038762 |
|      |         |        |            |                   |                 |                 |              | Lambda:           2.288e-06 |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|   71 |       3 | Accept |    0.25905 |            16.096 |           0.242 |         0.26007 |     ensemble | Method:                 Bag |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      160 |
|      |         |        |            |                   |                 |                 |              | LearnRate:              NaN |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:              2 |
|   72 |       3 | Accept |    0.28448 |            13.826 |           0.242 |         0.26007 |     ensemble | Method:            RUSBoost |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      161 |
|      |         |        |            |                   |                 |                 |              | LearnRate:           0.7581 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:             14 |
|   73 |       3 | Accept |    0.25695 |           0.24642 |           0.242 |         0.26007 |          knn | NumNeighbors:            14 |
|      |         |        |            |                   |                 |                 |              | Distance:         cityblock |
|   74 |       6 | Accept |    0.32396 |            1.8799 |           0.242 |         0.26007 |       kernel | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | KernelScale:        0.86904 |
|      |         |        |            |                   |                 |                 |              | Lambda:             0.29724 |
|   75 |       4 | Accept |    0.32456 |           0.20481 |           0.242 |         0.26007 |         tree | MinLeafSize:              5 |
|   76 |       4 | Accept |    0.32994 |           0.35799 |           0.242 |         0.26007 |         tree | MinLeafSize:              3 |
|   77 |       4 | Accept |    0.26054 |            4.1734 |           0.242 |         0.26007 |     ensemble | Method:          AdaBoostM2 |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:       32 |
|      |         |        |            |                   |                 |                 |              | LearnRate:          0.06853 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:             19 |
|   78 |       4 | Accept |    0.43703 |           0.92964 |           0.242 |         0.24831 |       linear | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | Lambda:            0.013265 |
|      |         |        |            |                   |                 |                 |              | Learner:           logistic |
|   79 |       4 | Accept |    0.31588 |            17.116 |           0.242 |         0.24831 |     ensemble | Method:          AdaBoostM2 |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      201 |
|      |         |        |            |                   |                 |                 |              | LearnRate:        0.0012955 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:            319 |
|   80 |       3 | Accept |    0.25277 |            7.8173 |           0.242 |         0.24831 |       kernel | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | KernelScale:        0.78697 |
|      |         |        |            |                   |                 |                 |              | Lambda:          4.1197e-06 |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|   81 |       3 | Accept |    0.43015 |           0.10239 |           0.242 |         0.24831 |        discr | Delta:            0.0069822 |
|      |         |        |            |                   |                 |                 |              | Gamma:              0.49526 |
|   82 |       6 | Accept |    0.42208 |          0.096953 |           0.242 |         0.24831 |        discr | Delta:             0.057485 |
|      |         |        |            |                   |                 |                 |              | Gamma:             0.045714 |
|   83 |       3 | Accept |    0.52617 |            2.3915 |           0.242 |         0.24831 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.26869 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         17.595 |
|   84 |       3 | Accept |    0.43344 |            1.2875 |           0.242 |         0.24831 |          knn | NumNeighbors:           119 |
|      |         |        |            |                   |                 |                 |              | Distance:       mahalanobis |
|   85 |       3 | Accept |    0.30093 |            1.3003 |           0.242 |         0.24831 |       linear | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | Lambda:            0.047624 |
|      |         |        |            |                   |                 |                 |              | Learner:                svm |
|   86 |       3 | Accept |    0.42267 |           0.64506 |           0.242 |         0.24831 |          knn | NumNeighbors:            48 |
|      |         |        |            |                   |                 |                 |              | Distance:            cosine |
|   87 |       6 | Accept |    0.32905 |           0.26891 |           0.242 |         0.24831 |          knn | NumNeighbors:            65 |
|      |         |        |            |                   |                 |                 |              | Distance:        seuclidean |
|   88 |       4 | Accept |    0.24349 |            1.9282 |           0.242 |         0.24684 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:    0.0024196 |
|      |         |        |            |                   |                 |                 |              | KernelScale:      0.0082547 |
|   89 |       4 | Accept |    0.24499 |            1.6543 |           0.242 |         0.24684 |       linear | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | Lambda:          3.3697e-06 |
|      |         |        |            |                   |                 |                 |              | Learner:                svm |
|   90 |       4 | Accept |    0.24469 |            2.1463 |           0.242 |         0.24684 |       linear | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | Lambda:          6.5777e-05 |
|      |         |        |            |                   |                 |                 |              | Learner:           logistic |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|   91 |       4 | Accept |    0.28059 |           0.15481 |           0.242 |         0.24684 |           nb | DistributionNames:   normal |
|      |         |        |            |                   |                 |                 |              | Width:                  NaN |
|   92 |       5 | Accept |    0.28059 |           0.38138 |           0.242 |         0.24684 |           nb | DistributionNames:   normal |
|      |         |        |            |                   |                 |                 |              | Width:                  NaN |
|   93 |       5 | Accept |    0.28059 |           0.15804 |           0.242 |         0.24684 |           nb | DistributionNames:   normal |
|      |         |        |            |                   |                 |                 |              | Width:                  NaN |
|   94 |       4 | Accept |    0.29674 |            11.234 |           0.242 |         0.24684 |     ensemble | Method:            RUSBoost |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      147 |
|      |         |        |            |                   |                 |                 |              | LearnRate:          0.95321 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:            112 |
|   95 |       4 | Accept |    0.28059 |           0.12279 |           0.242 |         0.24684 |           nb | DistributionNames:   normal |
|      |         |        |            |                   |                 |                 |              | Width:                  NaN |
|   96 |       4 | Accept |    0.29704 |            1.1016 |           0.242 |         0.24684 |     ensemble | Method:          AdaBoostM2 |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:       11 |
|      |         |        |            |                   |                 |                 |              | LearnRate:        0.0072731 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:             12 |
|   97 |       4 | Accept |    0.28059 |          0.099833 |           0.242 |         0.24684 |           nb | DistributionNames:   normal |
|      |         |        |            |                   |                 |                 |              | Width:                  NaN |
|   98 |       4 | Best   |     0.2411 |            1.3634 |          0.2411 |         0.24471 |       linear | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | Lambda:          0.00056045 |
|      |         |        |            |                   |                 |                 |              | Learner:                svm |
|   99 |       4 | Accept |    0.74185 |           0.10441 |          0.2411 |         0.24471 |        discr | Delta:               39.281 |
|      |         |        |            |                   |                 |                 |              | Gamma:              0.77032 |
|  100 |       4 | Accept |    0.30093 |           0.11043 |          0.2411 |         0.24471 |         tree | MinLeafSize:            135 |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|  101 |       4 | Accept |    0.46844 |           0.17182 |          0.2411 |         0.24471 |          knn | NumNeighbors:             2 |
|      |         |        |            |                   |                 |                 |              | Distance:            cosine |
|  102 |       4 | Accept |    0.25426 |            3.1634 |          0.2411 |         0.24471 |     ensemble | Method:                 Bag |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:       38 |
|      |         |        |            |                   |                 |                 |              | LearnRate:              NaN |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:             28 |
|  103 |       4 | Accept |    0.24469 |            1.6558 |          0.2411 |         0.24558 |       linear | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | Lambda:           0.0012413 |
|      |         |        |            |                   |                 |                 |              | Learner:           logistic |
|  104 |       4 | Accept |    0.43823 |            3.6572 |          0.2411 |         0.24558 |       kernel | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | KernelScale:         13.293 |
|      |         |        |            |                   |                 |                 |              | Lambda:           0.0031304 |
|  105 |       4 | Accept |    0.31977 |            1.3423 |          0.2411 |         0.24556 |       linear | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | Lambda:            0.040102 |
|      |         |        |            |                   |                 |                 |              | Learner:           logistic |
|  106 |       6 | Accept |    0.24678 |            2.0849 |          0.2411 |         0.24529 |       linear | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | Lambda:          3.9918e-05 |
|      |         |        |            |                   |                 |                 |              | Learner:           logistic |
|  107 |       5 | Accept |    0.24678 |            1.9627 |          0.2411 |         0.24441 |       linear | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | Lambda:          3.9918e-05 |
|      |         |        |            |                   |                 |                 |              | Learner:           logistic |
|  108 |       5 | Accept |    0.24678 |            2.3413 |          0.2411 |         0.24441 |       linear | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | Lambda:          3.9918e-05 |
|      |         |        |            |                   |                 |                 |              | Learner:           logistic |
|  109 |       4 | Accept |    0.29435 |            14.698 |          0.2411 |         0.24441 |     ensemble | Method:                 Bag |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      249 |
|      |         |        |            |                   |                 |                 |              | LearnRate:              NaN |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:            292 |
|  110 |       4 | Accept |    0.37152 |          0.098701 |          0.2411 |         0.24441 |         tree | MinLeafSize:            375 |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|  111 |       4 | Accept |    0.25666 |            5.7386 |          0.2411 |         0.24441 |     ensemble | Method:                 Bag |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:       61 |
|      |         |        |            |                   |                 |                 |              | LearnRate:              NaN |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:              3 |
|  112 |       4 | Accept |    0.28059 |           0.10645 |          0.2411 |         0.24441 |           nb | DistributionNames:   normal |
|      |         |        |            |                   |                 |                 |              | Width:                  NaN |
|  113 |       4 | Accept |    0.28059 |           0.10515 |          0.2411 |         0.24441 |           nb | DistributionNames:   normal |
|      |         |        |            |                   |                 |                 |              | Width:                  NaN |
|  114 |       6 | Accept |    0.74185 |            2.7447 |          0.2411 |         0.24441 |           nb | DistributionNames:   kernel |
|      |         |        |            |                   |                 |                 |              | Width:               74.975 |
|  115 |       4 | Accept |    0.78552 |            10.495 |          0.2411 |         0.24441 |       kernel | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | KernelScale:      0.0050713 |
|      |         |        |            |                   |                 |                 |              | Lambda:          3.7406e-06 |
|  116 |       4 | Accept |    0.74185 |            2.7544 |          0.2411 |         0.24441 |           nb | DistributionNames:   kernel |
|      |         |        |            |                   |                 |                 |              | Width:               74.975 |
|  117 |       4 | Accept |    0.74185 |            2.6565 |          0.2411 |         0.24441 |           nb | DistributionNames:   kernel |
|      |         |        |            |                   |                 |                 |              | Width:               74.975 |
|  118 |       4 | Accept |    0.45797 |            11.614 |          0.2411 |         0.24441 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.94716 |
|      |         |        |            |                   |                 |                 |              | KernelScale:       0.072905 |
|  119 |       4 | Accept |    0.65271 |            1.6037 |          0.2411 |         0.24441 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:    0.0010356 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         1.3521 |
|  120 |       4 | Accept |     0.3108 |            1.4953 |          0.2411 |         0.24441 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:     0.080708 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         2.7439 |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|  121 |       4 | Accept |     0.2414 |            1.2954 |          0.2411 |         0.24441 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:    0.0048396 |
|      |         |        |            |                   |                 |                 |              | KernelScale:        0.02413 |
|  122 |       4 | Accept |     0.5157 |            9.6657 |          0.2411 |         0.24441 |       kernel | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | KernelScale:       0.071659 |
|      |         |        |            |                   |                 |                 |              | Lambda:          1.3447e-05 |
|  123 |       4 | Accept |    0.53186 |            390.32 |          0.2402 |         0.24441 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       416.46 |
|      |         |        |            |                   |                 |                 |              | KernelScale:      0.0019087 |
|  124 |       4 | Best   |     0.2402 |            1.4571 |          0.2402 |         0.24441 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:     0.033468 |
|      |         |        |            |                   |                 |                 |              | KernelScale:       0.073489 |
|  125 |       4 | Accept |     0.2402 |            1.3713 |          0.2402 |         0.24441 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:    0.0040249 |
|      |         |        |            |                   |                 |                 |              | KernelScale:       0.030373 |
|  126 |       3 | Accept |    0.24529 |            39.503 |          0.2402 |         0.24441 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.32116 |
|      |         |        |            |                   |                 |                 |              | KernelScale:      0.0076281 |
|  127 |       3 | Accept |    0.25576 |            1.4031 |          0.2402 |         0.24441 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:     0.018022 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         0.3703 |
|  128 |       6 | Accept |     0.2426 |            1.3555 |          0.2402 |         0.24229 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:     0.029999 |
|      |         |        |            |                   |                 |                 |              | KernelScale:       0.046245 |
|  129 |       3 | Accept |    0.24499 |            9.5236 |          0.2402 |         0.24419 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.38346 |
|      |         |        |            |                   |                 |                 |              | KernelScale:        0.01786 |
|  130 |       3 | Accept |    0.28059 |           0.12828 |          0.2402 |         0.24419 |           nb | DistributionNames:   normal |
|      |         |        |            |                   |                 |                 |              | Width:                  NaN |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|  131 |       3 | Accept |     0.6886 |            1.4213 |          0.2402 |         0.24419 |       linear | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | Lambda:              3.0763 |
|      |         |        |            |                   |                 |                 |              | Learner:           logistic |
|  132 |       3 | Accept |     0.4487 |             3.111 |          0.2402 |         0.24419 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:        4.845 |
|      |         |        |            |                   |                 |                 |              | KernelScale:        0.74028 |
|  133 |       6 | Accept |    0.24469 |            8.3042 |          0.2402 |         0.24441 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.45335 |
|      |         |        |            |                   |                 |                 |              | KernelScale:        0.02034 |
|  134 |       3 | Accept |    0.26204 |            1.7109 |          0.2402 |         0.24441 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:    0.0011217 |
|      |         |        |            |                   |                 |                 |              | KernelScale:        0.10651 |
|  135 |       3 | Accept |    0.74185 |            4.0388 |          0.2402 |         0.24441 |       kernel | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | KernelScale:         10.518 |
|      |         |        |            |                   |                 |                 |              | Lambda:             0.20458 |
|  136 |       3 | Accept |    0.29734 |            9.9598 |          0.2402 |         0.24441 |     ensemble | Method:          AdaBoostM2 |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      107 |
|      |         |        |            |                   |                 |                 |              | LearnRate:        0.0023672 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:            197 |
|  137 |       3 | Accept |    0.44391 |            2.0399 |          0.2402 |         0.24441 |           nb | DistributionNames:   kernel |
|      |         |        |            |                   |                 |                 |              | Width:           0.00025608 |
|  138 |       6 | Accept |    0.24559 |            3.2102 |          0.2402 |         0.24276 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       0.5211 |
|      |         |        |            |                   |                 |                 |              | KernelScale:        0.04163 |
|  139 |       4 | Accept |    0.25067 |            1.4995 |          0.2402 |         0.24276 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:     0.030306 |
|      |         |        |            |                   |                 |                 |              | KernelScale:        0.37391 |
|  140 |       4 | Accept |    0.24559 |            1.6227 |          0.2402 |         0.24276 |       linear | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | Lambda:          3.0973e-07 |
|      |         |        |            |                   |                 |                 |              | Learner:                svm |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|  141 |       4 | Accept |    0.74634 |            7.0945 |          0.2402 |         0.24276 |       kernel | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | KernelScale:        0.01094 |
|      |         |        |            |                   |                 |                 |              | Lambda:           0.0013866 |
|  142 |       4 | Accept |    0.29076 |            1.3294 |          0.2402 |         0.24334 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:     0.006875 |
|      |         |        |            |                   |                 |                 |              | KernelScale:        0.38629 |
|  143 |       4 | Accept |    0.24379 |            1.4595 |          0.2402 |         0.24269 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:    0.0010315 |
|      |         |        |            |                   |                 |                 |              | KernelScale:      0.0079737 |
|  144 |       4 | Accept |    0.24499 |            4.9134 |          0.2402 |         0.24226 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.62692 |
|      |         |        |            |                   |                 |                 |              | KernelScale:       0.033311 |
|  145 |       4 | Accept |    0.24469 |            12.208 |          0.2402 |         0.24242 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:    0.0010122 |
|      |         |        |            |                   |                 |                 |              | KernelScale:      0.0010167 |
|  146 |       4 | Accept |    0.38588 |            1.5037 |          0.2402 |         0.24388 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:    0.0011127 |
|      |         |        |            |                   |                 |                 |              | KernelScale:        0.52838 |
|  147 |       4 | Accept |    0.24589 |            1.3026 |          0.2402 |         0.24228 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       0.1424 |
|      |         |        |            |                   |                 |                 |              | KernelScale:        0.58035 |
|  148 |       4 | Accept |     0.2408 |            1.2582 |          0.2402 |         0.24165 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:    0.0010168 |
|      |         |        |            |                   |                 |                 |              | KernelScale:       0.032668 |
|  149 |       4 | Accept |    0.24469 |            1.2764 |          0.2402 |         0.24197 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.13008 |
|      |         |        |            |                   |                 |                 |              | KernelScale:        0.53455 |
|  150 |       5 | Accept |    0.24469 |            6.7111 |          0.2402 |         0.24222 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.45516 |
|      |         |        |            |                   |                 |                 |              | KernelScale:       0.024796 |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|  151 |       5 | Accept |    0.30422 |            1.5471 |          0.2402 |         0.24244 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.36805 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         4.7124 |
|  152 |       6 | Accept |    0.24559 |            1.5701 |          0.2402 |          0.2414 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.21039 |
|      |         |        |            |                   |                 |                 |              | KernelScale:        0.63504 |
|  153 |       5 | Accept |    0.24529 |            66.311 |          0.2402 |         0.24243 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.45714 |
|      |         |        |            |                   |                 |                 |              | KernelScale:      0.0069546 |
|  154 |       5 | Accept |    0.24589 |             1.604 |          0.2402 |         0.24243 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:    0.0010712 |
|      |         |        |            |                   |                 |                 |              | KernelScale:       0.043866 |
|  155 |       5 | Accept |    0.29345 |            1.4823 |          0.2402 |         0.24262 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:     0.032053 |
|      |         |        |            |                   |                 |                 |              | KernelScale:        0.88175 |
|  156 |       6 | Accept |    0.25247 |            1.4792 |          0.2402 |         0.24289 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.14103 |
|      |         |        |            |                   |                 |                 |              | KernelScale:        0.91489 |
|  157 |       6 | Accept |     0.2405 |            1.5732 |          0.2402 |           0.242 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:    0.0010011 |
|      |         |        |            |                   |                 |                 |              | KernelScale:       0.012195 |
|  158 |       6 | Accept |     0.2426 |            1.5232 |          0.2402 |         0.24223 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.52301 |
|      |         |        |            |                   |                 |                 |              | KernelScale:        0.69511 |
|  159 |       6 | Accept |    0.25456 |            1.9467 |          0.2402 |         0.24253 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.63305 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         2.1073 |
|  160 |       5 | Accept |    0.24559 |            133.37 |          0.2402 |         0.24253 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.73914 |
|      |         |        |            |                   |                 |                 |              | KernelScale:       0.005832 |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|  161 |       5 | Accept |    0.57314 |            8.1723 |          0.2402 |         0.24253 |       kernel | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | KernelScale:       0.071267 |
|      |         |        |            |                   |                 |                 |              | Lambda:          1.4009e-06 |
|  162 |       5 | Accept |    0.24649 |            1.6878 |          0.2402 |         0.24325 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.19825 |
|      |         |        |            |                   |                 |                 |              | KernelScale:        0.74742 |
|  163 |       5 | Accept |     0.2417 |            1.5824 |          0.2402 |         0.24297 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:    0.0010619 |
|      |         |        |            |                   |                 |                 |              | KernelScale:        0.01008 |
|  164 |       4 | Accept |    0.45528 |            140.46 |          0.2402 |         0.24441 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.00706 |
|      |         |        |            |                   |                 |                 |              | KernelScale:       0.030909 |
|  165 |       4 | Accept |    0.31409 |            1.5573 |          0.2402 |         0.24441 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.56217 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         7.5961 |
|  166 |       4 | Accept |    0.46575 |            2.2317 |          0.2402 |         0.24441 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.10607 |
|      |         |        |            |                   |                 |                 |              | KernelScale:        0.67446 |
|  167 |       4 | Accept |    0.24529 |            3.3215 |          0.2402 |         0.24334 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       1.4843 |
|      |         |        |            |                   |                 |                 |              | KernelScale:       0.069679 |
|  168 |       4 | Accept |    0.25396 |            1.3297 |          0.2402 |         0.24353 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.52671 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         1.9394 |
|  169 |       5 | Accept |     0.2402 |            1.5257 |          0.2402 |         0.24313 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:    0.0010378 |
|      |         |        |            |                   |                 |                 |              | KernelScale:       0.012749 |
|  170 |       6 | Accept |     0.3464 |            1.8583 |          0.2402 |         0.24237 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.50591 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         9.2835 |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|  171 |       6 | Accept |    0.24499 |            12.298 |          0.2402 |         0.24203 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:    0.0018442 |
|      |         |        |            |                   |                 |                 |              | KernelScale:      0.0012506 |
|  172 |       6 | Accept |    0.30272 |            1.6031 |          0.2402 |         0.24186 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       2.8265 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         11.897 |
|  173 |       6 | Accept |    0.24349 |            1.4247 |          0.2402 |         0.24134 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:    0.0010459 |
|      |         |        |            |                   |                 |                 |              | KernelScale:       0.036404 |
|  174 |       6 | Accept |    0.29794 |            1.6502 |          0.2402 |         0.24299 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       5.4893 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         13.359 |
|  175 |       5 | Accept |    0.24529 |            109.43 |          0.2402 |         0.24345 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.88969 |
|      |         |        |            |                   |                 |                 |              | KernelScale:      0.0075436 |
|  176 |       5 | Accept |    0.25007 |            1.6406 |          0.2402 |         0.24345 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:    0.0010212 |
|      |         |        |            |                   |                 |                 |              | KernelScale:       0.071763 |
|  177 |       5 | Accept |    0.24619 |             2.171 |          0.2402 |         0.24259 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:    0.0010341 |
|      |         |        |            |                   |                 |                 |              | KernelScale:      0.0039146 |
|  178 |       5 | Accept |    0.32576 |            1.6841 |          0.2402 |         0.24185 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       1.6102 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         14.532 |
|  179 |       5 | Accept |     0.8262 |            890.49 |          0.2402 |         0.24179 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.18649 |
|      |         |        |            |                   |                 |                 |              | KernelScale:      0.0010802 |
|  180 |       5 | Accept |    0.30212 |            1.5671 |          0.2402 |         0.24174 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       6.0833 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         15.913 |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|  181 |       5 | Accept |    0.24499 |            14.697 |          0.2402 |         0.24192 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:    0.0078062 |
|      |         |        |            |                   |                 |                 |              | KernelScale:      0.0020664 |
|  182 |       5 | Accept |    0.24529 |            61.944 |          0.2402 |          0.2414 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       1.0466 |
|      |         |        |            |                   |                 |                 |              | KernelScale:       0.011265 |
|  183 |       5 | Accept |    0.24499 |            17.644 |          0.2402 |         0.24186 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:    0.0021279 |
|      |         |        |            |                   |                 |                 |              | KernelScale:      0.0010743 |
|  184 |       5 | Accept |    0.29794 |            1.6007 |          0.2402 |         0.24189 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:    0.0010132 |
|      |         |        |            |                   |                 |                 |              | KernelScale:        0.17669 |
|  185 |       4 | Accept |    0.24918 |            279.94 |          0.2402 |         0.24236 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       891.39 |
|      |         |        |            |                   |                 |                 |              | KernelScale:       0.076868 |
|  186 |       4 | Accept |    0.26593 |            1.4006 |          0.2402 |         0.24236 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.14381 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         1.2859 |
|  187 |       4 | Accept |    0.24768 |             1.438 |          0.2402 |         0.24161 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.47763 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         1.4081 |
|  188 |       4 | Accept |    0.24589 |            2.5142 |          0.2402 |          0.2416 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:    0.0010362 |
|      |         |        |            |                   |                 |                 |              | KernelScale:      0.0024579 |
|  189 |       4 | Accept |     0.2405 |            1.2662 |          0.2402 |         0.24215 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       11.232 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         1.4768 |
|  190 |       4 | Accept |    0.24678 |            1.2604 |          0.2402 |         0.24174 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.48152 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         1.1771 |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|  191 |       4 | Accept |    0.25426 |            1.2846 |          0.2402 |         0.24186 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.47194 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         1.7714 |
|  192 |       5 | Accept |    0.24768 |            1.3295 |          0.2402 |         0.24188 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.44397 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         1.3493 |
|  193 |       6 | Accept |     0.2414 |            1.3979 |          0.2402 |         0.24154 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       1.8796 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         1.4211 |
|  194 |       6 | Accept |    0.24499 |            18.984 |          0.2402 |         0.24225 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:    0.0018335 |
|      |         |        |            |                   |                 |                 |              | KernelScale:      0.0010104 |
|  195 |       6 | Accept |    0.25037 |            1.5112 |          0.2402 |         0.24212 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.41413 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         1.4211 |
|  196 |       6 | Accept |    0.24499 |             6.007 |          0.2402 |         0.24191 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:    0.0010001 |
|      |         |        |            |                   |                 |                 |              | KernelScale:      0.0013198 |
|  197 |       6 | Accept |    0.24529 |            111.16 |          0.2402 |         0.24215 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:     0.046722 |
|      |         |        |            |                   |                 |                 |              | KernelScale:      0.0016388 |
|  198 |       5 | Accept |    0.24499 |            18.688 |          0.2402 |         0.24186 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:    0.0033281 |
|      |         |        |            |                   |                 |                 |              | KernelScale:      0.0012057 |
|  199 |       5 | Accept |     0.2426 |            1.4789 |          0.2402 |         0.24186 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       3.0066 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         1.3889 |
|  200 |       6 | Accept |     0.2417 |             1.499 |          0.2402 |         0.24212 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       1.7327 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         1.3637 |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|  201 |       5 | Accept |    0.26473 |            277.53 |          0.2402 |         0.24176 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.19781 |
|      |         |        |            |                   |                 |                 |              | KernelScale:      0.0010905 |
|  202 |       5 | Accept |    0.30332 |            1.5632 |          0.2402 |         0.24176 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:     0.075228 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         1.8677 |
|  203 |       5 | Accept |     0.3108 |            1.5519 |          0.2402 |         0.24188 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       2.8086 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         16.078 |
|  204 |       5 | Accept |     0.2414 |            1.4413 |          0.2402 |         0.24147 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       3.1547 |
|      |         |        |            |                   |                 |                 |              | KernelScale:        0.57043 |
|  205 |       5 | Accept |     0.3108 |            1.5576 |          0.2402 |         0.24195 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       3.0235 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         16.787 |
|  206 |       5 | Accept |     0.2411 |            1.3939 |          0.2402 |         0.24163 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:    0.0010447 |
|      |         |        |            |                   |                 |                 |              | KernelScale:       0.022855 |
|  207 |       5 | Accept |    0.29704 |            1.5568 |          0.2402 |         0.24155 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.11574 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         1.8573 |
|  208 |       5 | Accept |     0.2426 |            1.4114 |          0.2402 |         0.24195 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       2.2749 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         1.2395 |
|  209 |       5 | Accept |    0.24559 |             3.445 |          0.2402 |          0.2417 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       560.48 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         1.4181 |
|  210 |       4 | Accept |    0.24678 |            266.64 |          0.2402 |         0.24136 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       11.849 |
|      |         |        |            |                   |                 |                 |              | KernelScale:      0.0095181 |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|  211 |       4 | Accept |    0.24589 |            2.1278 |          0.2402 |         0.24136 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:        41.82 |
|      |         |        |            |                   |                 |                 |              | KernelScale:        0.71147 |
|  212 |       3 | Accept |    0.95034 |            1042.9 |          0.2402 |         0.24153 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       10.672 |
|      |         |        |            |                   |                 |                 |              | KernelScale:      0.0013453 |
|  213 |       3 | Accept |    0.24649 |            2.0006 |          0.2402 |         0.24153 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       210.22 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         1.4654 |
|  214 |       6 | Accept |    0.26653 |            1.2521 |          0.2402 |         0.24136 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.16417 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         1.3626 |
|  215 |       4 | Accept |     0.2429 |            1.5969 |          0.2402 |         0.24136 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:    0.0010295 |
|      |         |        |            |                   |                 |                 |              | KernelScale:       0.008743 |
|  216 |       4 | Accept |    0.33353 |            1.2604 |          0.2402 |         0.24136 |           nb | DistributionNames:   kernel |
|      |         |        |            |                   |                 |                 |              | Width:            0.0017992 |
|  217 |       4 | Accept |    0.28059 |            0.2661 |          0.2402 |         0.24136 |           nb | DistributionNames:   normal |
|      |         |        |            |                   |                 |                 |              | Width:                  NaN |
|  218 |       4 | Accept |    0.24798 |            1.3024 |          0.2402 |         0.24173 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       66.132 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         16.829 |
|  219 |       4 | Accept |    0.24529 |             1.255 |          0.2402 |         0.24156 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       1.0858 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         1.3599 |
|  220 |       4 | Accept |     0.2408 |            1.2539 |          0.2402 |         0.24183 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       3.8001 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         1.3322 |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|  221 |       4 | Accept |    0.24589 |            1.8906 |          0.2402 |         0.24185 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       399.07 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         2.1791 |
|  222 |       4 | Accept |     0.2414 |            1.2821 |          0.2402 |         0.24187 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       4.8589 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         1.3542 |
|  223 |       4 | Accept |     0.2423 |            1.2804 |          0.2402 |         0.24131 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       2.6082 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         1.3565 |
|  224 |       4 | Accept |    0.24559 |            3.1158 |          0.2402 |         0.24116 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:        536.1 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         1.4679 |
|  225 |       4 | Accept |    0.25067 |            1.3228 |          0.2402 |         0.24178 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       74.127 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         18.528 |
|  226 |       3 | Accept |    0.28358 |               328 |          0.2402 |         0.24207 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:      0.47384 |
|      |         |        |            |                   |                 |                 |              | KernelScale:       0.001006 |
|  227 |       3 | Accept |    0.24499 |            6.2167 |          0.2402 |         0.24207 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:    0.0026293 |
|      |         |        |            |                   |                 |                 |              | KernelScale:      0.0019141 |
|  228 |       6 | Accept |     0.2402 |            1.2501 |          0.2402 |         0.24173 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:    0.0010356 |
|      |         |        |            |                   |                 |                 |              | KernelScale:       0.012867 |
|  229 |       3 | Accept |    0.24589 |            1.4248 |          0.2402 |         0.24173 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       104.21 |
|      |         |        |            |                   |                 |                 |              | KernelScale:          17.45 |
|  230 |       3 | Accept |    0.43015 |           0.13765 |          0.2402 |         0.24173 |        discr | Delta:              0.00951 |
|      |         |        |            |                   |                 |                 |              | Gamma:              0.68613 |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|  231 |       3 | Accept |    0.47383 |            2.5354 |          0.2402 |         0.24173 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       1.2431 |
|      |         |        |            |                   |                 |                 |              | KernelScale:        0.76632 |
|  232 |       3 | Accept |    0.67664 |           0.30377 |          0.2402 |         0.24173 |          knn | NumNeighbors:             8 |
|      |         |        |            |                   |                 |                 |              | Distance:           jaccard |
|  233 |       6 | Accept |     0.2414 |            1.2369 |          0.2402 |         0.24133 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       820.98 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         17.331 |
|  234 |       3 | Accept |    0.27759 |            1.4452 |          0.2402 |         0.24133 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       22.198 |
|      |         |        |            |                   |                 |                 |              | KernelScale:          17.97 |
|  235 |       3 | Accept |    0.28059 |           0.13623 |          0.2402 |         0.24133 |           nb | DistributionNames:   normal |
|      |         |        |            |                   |                 |                 |              | Width:                  NaN |
|  236 |       3 | Accept |    0.52408 |             1.503 |          0.2402 |         0.24133 |          knn | NumNeighbors:           351 |
|      |         |        |            |                   |                 |                 |              | Distance:       mahalanobis |
|  237 |       3 | Accept |    0.27789 |            5.8867 |          0.2402 |         0.24133 |     ensemble | Method:            RUSBoost |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:       68 |
|      |         |        |            |                   |                 |                 |              | LearnRate:          0.18331 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:              3 |
|  238 |       6 | Accept |    0.24499 |            1.2819 |          0.2402 |         0.24188 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       201.86 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         18.062 |
|  239 |       3 | Accept |    0.25097 |            1.4345 |          0.2402 |         0.24116 |          svm | Coding:            onevsone |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:        105.8 |
|      |         |        |            |                   |                 |                 |              | KernelScale:         23.315 |
|  240 |       3 | Accept |    0.30212 |           0.12275 |          0.2402 |         0.24116 |         tree | MinLeafSize:            122 |
|===========================================================================================================================================|
| Iter | Active  | Eval   | Validation | Time for training | Observed min    | Estimated min   | Learner      | Hyperparameter:       Value |
|      | workers | result | loss       | & validation (sec)| validation loss | validation loss |              |                             |
|===========================================================================================================================================|
|  241 |       3 | Accept |    0.25307 |            11.978 |          0.2402 |         0.24116 |     ensemble | Method:          AdaBoostM2 |
|      |         |        |            |                   |                 |                 |              | NumLearningCycles:      119 |
|      |         |        |            |                   |                 |                 |              | LearnRate:          0.60308 |
|      |         |        |            |                   |                 |                 |              | MinLeafSize:              1 |
|  242 |       3 | Accept |    0.44182 |            11.435 |          0.2402 |         0.24116 |          svm | Coding:            onevsall |
|      |         |        |            |                   |                 |                 |              | BoxConstraint:       6.2783 |
|      |         |        |            |                   |                 |                 |              | KernelScale:        0.19364 |

__________________________________________________________
Optimization completed.
Total iterations: 242
Total elapsed time: 1907.7403 seconds
Total time for training and validation: 4936.5339 seconds

Best observed learner is a multiclass svm model with:
	Coding (ECOC):     onevsone
	BoxConstraint:     0.033468
	KernelScale:       0.073489
Observed validation loss: 0.2402
Time for training and validation: 1.4571 seconds

Best estimated learner (returned model) is a multiclass svm model with:
	Coding (ECOC):     onevsone
	BoxConstraint:    0.0010378
	KernelScale:       0.012749
Estimated validation loss: 0.24116
Estimated time for training and validation: 1.5595 seconds

Documentation for fitcauto display

Конечная модель, возвращенная fitcauto соответствует лучшему оцененному ученику. Перед возвращением модели функция переобучает ее, используя все обучающие данные (creditTrain), перечисленные Learner (или модель) тип и отображенные значения гиперзначений параметров.

Оценка эффективности тестового набора

Модель Mdl соответствует лучшей точке в байесовской оптимизации согласно 'min-visited-mean' критерий. Чтобы оценить, как модель будет работать с новыми данными, посмотрите на наблюдаемую точность перекрестной валидации модели (cvAccuracy) и его общую расчетную эффективность, основанную на байесовской оптимизации (estimatedAccuracy).

[x,~,iteration] = bestPoint(Results,'Criterion','min-visited-mean');

cvError = Results.ObjectiveTrace(iteration);
cvAccuracy = 1 - cvError
cvAccuracy = 0.7598
estimatedError = predictObjective(Results,x);
estimatedAccuracy = 1 - estimatedError
estimatedAccuracy = 0.7588

Оцените эффективность модели на тестовом наборе. Создайте матрицу неточностей из результатов и задайте порядок классов в матрице неточностей.

testAccuracy = 1 - loss(Mdl,creditTest,'Rating')
testAccuracy = 0.7438
cm = confusionchart(creditTest.Rating,predict(Mdl,creditTest));
sortClasses(cm,{'AAA','AA','A','BBB','BB','B','CCC'})

Входные параметры

свернуть все

Выборочные данные, заданный как таблица. Каждая строка Tbl соответствует одному наблюдению, и каждый столбец соответствует одному предиктору. Опционально Tbl может содержать один дополнительный столбец для переменной отклика. Многополюсные переменные и массивы ячеек, отличные от массивов ячеек векторов символов, не приняты.

Если Tbl содержит переменную отклика, и необходимо использовать все оставшиеся переменные в Tbl в качестве предикторов задайте переменную отклика используя ResponseVarName.

Если Tbl содержит переменную отклика, и необходимо использовать только подмножество остальных переменных в Tbl в качестве предикторов задайте формулу, используя formula.

Если Tbl не содержит переменную отклика, задает переменную отклика используя Y. Длина переменной отклика и количество строк в Tbl должно быть равным.

Типы данных: table

Имя переменной отклика, заданное как имя переменной в Tbl.

Вы должны задать ResponseVarName как вектор символов или строковый скаляр. Для примера, если переменная отклика Y хранится как Tbl.Y, затем укажите его следующим 'Y'. В противном случае программное обеспечение обрабатывает все столбцы Tbl, включая Y, как предикторы при обучении модели.

Переменная отклика должна быть категориальными символьными или строковыми массивами; логический или числовой вектор; или массив ячеек из векторов символов. Если Y является символьным массивом, тогда каждый элемент переменной отклика должен соответствовать одной строке массива.

Хорошей практикой является определение порядка классов при помощи ClassNames аргумент имя-значение.

Типы данных: char | string

Объяснительная модель переменной отклика и подмножества переменных предиктора, заданная в виде вектора символов или строкового скаляра в форме 'Y~x1+x2+x3'. В этой форме Y представляет переменную отклика, и x1, x2, и x3 представляют переменные предиктора.

Чтобы задать подмножество переменных в Tbl в качестве предикторов для настройки модели используйте формулу. Если вы задаете формулу, то программное обеспечение не использует никаких переменных в Tbl которые не появляются в formula.

Имена переменных в формуле должны быть обоими именами переменных в Tbl (Tbl.Properties.VariableNames) и действительный MATLAB® идентификаторы. Можно проверить имена переменных в Tbl при помощи isvarname функция. Если имена переменных недопустимы, можно преобразовать их, используя matlab.lang.makeValidName функция.

Типы данных: char | string

Метки класса, заданные как числовой, категориальный или логический вектор, символьные или строковые массивы или массив ячеек из векторов символов.

  • Если Y является символьный массив, тогда каждый элемент меток классов должен соответствовать одной строке массива.

  • Длина Y должно быть равно количеству строк в Tbl или X.

  • Хорошей практикой является определение порядка классов при помощи ClassNames аргумент пары "имя-значение".

Типы данных: single | double | categorical | logical | char | string | cell

Данные предиктора, заданные как числовая матрица.

Каждая строка X соответствует одному наблюдению, и каждый столбец соответствует одному предиктору.

Длина Y и количество строк в X должно быть равным.

Чтобы задать имена предикторов в порядке их внешнего вида в X, используйте PredictorNames аргумент пары "имя-значение".

Типы данных: single | double

Примечание

Программное обеспечение лечит NaN, пустой символьный вектор (''), пустая строка (""), <missing>, и <undefined> элементы как отсутствующие данные. Программа удаляет строки данных, соответствующих отсутствующим значениям в переменной отклика. Однако обработка отсутствующих значений в данных предиктора X или Tbl варьируется среди моделей (или учащихся).

Аргументы в виде пар имя-значение

Задайте необязательные разделенные разделенными запятой парами Name,Value аргументы. Name - имя аргумента и Value - соответствующее значение. Name должны находиться внутри кавычек. Можно задать несколько аргументов в виде пар имен и значений в любом порядке Name1,Value1,...,NameN,ValueN.

Пример: 'HyperparameterOptimizationOptions',struct('MaxObjectiveEvaluations',200,'Verbose',2) задает, чтобы запустить 200 итераций процесса оптимизации (то есть попробовать 200 комбинаций гиперпараметров модели) и отобразить в Командном окне информацию о следующей комбинации гиперпараметров модели, которая будет оценена.
Опции оптимизации

свернуть все

Типы классификационных моделей, чтобы попытаться во время оптимизации, заданные как разделенная разделенными запятой парами, состоящая из 'Learners' и значение в первой таблице ниже или одно или несколько имен учащихся во второй таблице. Задайте несколько имен учащихся в виде строки или массива ячеек.

ЗначениеОписание
'auto'fitcauto автоматически выбирает подмножество учащихся, подходящее для заданных данных предиктора и отклика. Ученики могут иметь значения гиперзначений параметров модели, которые отличаются от значений по умолчанию. Для получения дополнительной информации смотрите Автоматический выбор учащихся.
'all'fitcauto выбирает всех возможных учащихся.
'all-linear'fitcauto выбирает линейных учащихся: 'discr' (с линейным дискриминантным типом) и 'linear'.
'all-nonlinear'fitcauto выбирает всех нелинейных учащихся: 'discr' (с квадратичным типом дискриминанта), 'ensemble', 'kernel', 'knn', 'nb', 'svm' (с Гауссовым или полиномиальным ядром), и 'tree'.

Примечание

Для большей эффективности, fitcauto не выбирает следующие комбинации моделей, когда задается одно из предыдущих значений.

  • 'kernel' и 'svm' (с гауссовым ядром) - fitcauto выбирает первое, когда данные предиктора имеют более 11000 наблюдений, и второе в противном случае.

  • 'linear' и 'svm' (с линейным ядром) - fitcauto выбирает первый.

Имя учащегосяОписание
'discr'Классификатор дискриминантного анализа
'ensemble'Классификационная модель ансамбля
'kernel'Классификационная модель ядра
'knn'k-ближайших соседей
'linear'Линейная классификационная модель
'nb'Наивный классификатор Байеса
'svm'Машина опорных векторов
'tree'Дерево классификации двоичных решений

Пример: 'Learners','all'

Пример: 'Learners','ensemble'

Пример: 'Learners',{'svm','tree'}

Типы данных: char | string | cell

Гиперпараметры для оптимизации, заданные как разделенная разделенными запятой парами, состоящая из 'OptimizeHyperparameters' и 'auto' или 'all'. Оптимизируемые гиперпараметры зависят от модели (или учащегося), как описано в этой таблице.

Имя учащегосяГиперпараметры для 'auto'Дополнительные гиперпараметры для 'all'Примечания
'discr'Delta, GammaDiscrimType

  • Когда Learners значение 'all-linear', fitcauto функция выбирает среди DiscrimType значения 'linear', 'diaglinear', и 'pseudolinear', независимо от OptimizeHyperparameters значение.

  • Когда Learners значение 'all-nonlinear', fitcauto функция выбирает среди DiscrimType значения 'quadratic', 'diagquadratic', и 'pseudoquadratic', независимо от OptimizeHyperparameters значение.

Для получения дополнительной информации, включая области значений поиска гиперпараметра, смотрите OptimizeHyperparameters. Обратите внимание, что вы не можете изменить области значений поиска гиперпараметра, когда используете fitcauto.

'ensemble'Method, NumLearningCycles, LearnRate, MinLeafSizeMaxNumSplits, NumVariablesToSample, SplitCriterion

Когда ансамбль Method значение - метод бустинга, ансамбль NumBins значение 50.

Для получения дополнительной информации, включая области значений поиска гиперпараметра, смотрите OptimizeHyperparameters. Обратите внимание, что вы не можете изменить области значений поиска гиперпараметра, когда используете fitcauto.

'kernel'KernelScale, Lambda, Coding (только для трех или более классов)Learner, NumExpansionDimensionsДля получения дополнительной информации, включая области значений поиска гиперпараметра, смотрите OptimizeHyperparameters и OptimizeHyperparameters (только для трех или более классов). Обратите внимание, что вы не можете изменить области значений поиска гиперпараметра, когда используете fitcauto.
'knn'Distance, NumNeighborsDistanceWeight, Exponent, StandardizeДля получения дополнительной информации, включая области значений поиска гиперпараметра, смотрите OptimizeHyperparameters. Обратите внимание, что вы не можете изменить области значений поиска гиперпараметра, когда используете fitcauto.
'linear'Lambda, Learner, Coding (только для трех или более классов)RegularizationДля получения дополнительной информации, включая области значений поиска гиперпараметра, смотрите OptimizeHyperparameters и OptimizeHyperparameters (только для трех или более классов). Обратите внимание, что вы не можете изменить области значений поиска гиперпараметра, когда используете fitcauto.
'nb'DistributionNames, WidthKernelДля получения дополнительной информации, включая области значений поиска гиперпараметра, смотрите OptimizeHyperparameters. Обратите внимание, что вы не можете изменить области значений поиска гиперпараметра, когда используете fitcauto.
'svm'BoxConstraint, KernelScale, Coding (только для трех или более классов)KernelFunction, PolynomialOrder, Standardize

  • Когда Learners значение 'all-linear', fitcauto функция не оптимизирует KernelFunction или PolynomialOrder гиперпараметры, когда OptimizeHyperparameters значение 'all'.

  • Когда Learners значение 'all-nonlinear', fitcauto функция выбирает среди KernelFunction значения 'gaussian' и 'polynomial', независимо от OptimizeHyperparameters значение.

  • The Standardize значение true когда OptimizeHyperparameters значение 'auto'.

Для получения дополнительной информации, включая области значений поиска гиперпараметра, смотрите OptimizeHyperparameters и OptimizeHyperparameters (только для трех или более классов). Обратите внимание, что вы не можете изменить области значений поиска гиперпараметра, когда используете fitcauto.

'tree'MinLeafSizeMaxNumSplits, SplitCriterionДля получения дополнительной информации, включая области значений поиска гиперпараметра, смотрите OptimizeHyperparameters. Обратите внимание, что вы не можете изменить области значений поиска гиперпараметра, когда используете fitcauto.

Примечание

Когда 'Learners' задано значение, отличное от 'auto'значения по умолчанию для не оптимизируемых гиперпараметров модели соответствуют значениям функции подгонки по умолчанию, если иное не указано в примечаниях к таблице. Когда 'Learners' установлено в 'auto'оптимизированные области значений поиска гиперпараметра и неоптимизированные значения гиперзначений параметров могут варьироваться, в зависимости от характеристик обучающих данных. Для получения дополнительной информации смотрите Автоматический выбор учащихся.

Пример: 'OptimizeHyperparameters','all'

Опции оптимизации, заданные как разделенная разделенными запятой парами, состоящая из 'HyperparameterOptimizationOptions' и структуру. Все поля в структуре являются необязательными.

Имя поляЗначенияДефолт
MaxObjectiveEvaluationsМаксимальное количество итераций (целевые вычисления функции)30*L, где L количество учащихся (см. Learners)
MaxTime

Временные пределы, заданные как положительное вещественное число. Предел времени в секундах, что измеряется tic и toc. Время выполнения может превысить MaxTime потому что MaxTime не прерывает вычисления функции.

Inf
ShowPlotsЛогическое значение, указывающее, показывать ли графики. Если true, это поле строит графики наилучших наблюдаемых и оцененных значений целевой функции (пока) относительно числа итерации.true
SaveIntermediateResultsЛогическое значение, указывающее, сохранять ли результаты. Если true, это поле перезаписывает переменную рабочей области с именем 'BayesoptResults' при каждой итерации. Переменная является BayesianOptimization объект.false
Verbose

Отображение в командной строке:

  • 0 - Нет итерационного отображения

  • 1 - Итеративное отображение

  • 2 - итерационное отображение с дополнительной информацией о следующей точке, которая будет оценена

1
UseParallelЛогическое значение, указывающее, запускать ли байесовскую оптимизацию параллельно, что требует Parallel Computing Toolbox™. Из-за непродуктивности параллельной синхронизации параллельная байесовская оптимизация не обязательно приводит к воспроизводимым результатам.false
Repartition

Логическое значение, указывающее, следует ли повторять перекрестную валидацию при каждой итерации. Если falseОптимизатор использует один раздел для оптимизации.

true обычно дает наиболее устойчивые результаты, потому что эта настройка учитывает шум разбиения. Однако для хороших результатов true требует, по крайней мере, в два раза больше вычислений функции.

false
Задайте только одну из следующих трех опций.
CVPartitioncvpartition объект, созданный cvpartition'Kfold',5 если вы не задаете какое-либо поле перекрестной проверки
HoldoutСкаляр в области значений (0,1) представляющий фракцию holdout
KfoldЦелое число, больше 1

Пример: 'HyperparameterOptimizationOptions',struct('UseParallel',true)

Типы данных: struct

Опции классификации

свернуть все

Категориальный список предикторов, заданный как одно из значений в этой таблице.

ЗначениеОписание
Вектор положительных целых чисел

Каждая запись в векторе является индексом значением, соответствующим столбцу данных предиктора, который содержит категориальную переменную. Значения индекса находятся между 1 и p, где p - количество предикторов, используемых для обучения модели.

Если fitcauto использует подмножество входа переменных в качестве предикторов, затем функция индексирует предикторы, используя только подмножество. The 'CategoricalPredictors' значения не подсчитывают переменную отклика, переменную веса наблюдения и любые другие переменные, которые функция не использует.

Логический вектор

A true запись означает, что соответствующий столбец данных предиктора является категориальной переменной. Длина вектора p.

Матрица символовКаждая строка матрицы является именем переменной. Имена должны совпадать с записями в PredictorNames. Дополните имена дополнительными пробелами, чтобы каждая строка матрицы символов имела одинаковую длину.
Строковые массивы или массив ячеек векторов символовКаждый элемент массива является именем переменной. Имена должны совпадать с записями в PredictorNames.
'all'Все предикторы категоричны.

По умолчанию, если данные предиктора находятся в таблице (Tbl), fitcauto принимает, что переменная категориальна, если это логический вектор, категориальный вектор, символьный массив, строковые массивы или массив ячеек из векторов символов. Однако ученики, которые используют деревья решений, предполагают, что математически упорядоченные категориальные векторы являются непрерывными переменными. Если данные предиктора являются матрицей (X), fitcauto принимает, что все предикторы непрерывны. Чтобы идентифицировать любые другие предикторы как категориальные предикторы, задайте их с помощью 'CategoricalPredictors' аргумент пары "имя-значение".

Для получения дополнительной информации о том, как подгоняющие функции относятся к категориальным предикторам, смотрите Автоматическое создание переменных Dummy.

Примечание

  • fitcauto не поддерживает категориальные предикторы для классификаторов дискриминантного анализа. То есть, если хочешь Learners включать 'discr' модели, вы не можете задать 'CategoricalPredictors' аргумент пары "имя-значение" или использование таблицы выборочных данных (Tbl) содержащие категориальные предикторы.

  • fitcauto не поддерживает смесь числовых и категориальных предикторов для k-ближайших соседей моделей. То есть, если хочешь Learners включать 'knn' модели, вы должны задать 'CategoricalPredictors' значение как 'all' или [].

Пример: 'CategoricalPredictors','all'

Типы данных: single | double | logical | char | string | cell

Имена классов, используемых для обучения, заданные как категориальные символьные или строковые массивы; логический или числовой вектор; или массив ячеек из векторов символов. ClassNames должен иметь тот совпадающий тип данных, что и переменная отклика в Tbl или Y.

Если ClassNames является символьный массив, тогда каждый элемент должен соответствовать одной строке массива.

Использование ClassNames кому:

  • Задайте порядок классов во время обучения.

  • Задайте порядок любой размерности входного или выходного аргумента, которая соответствует порядку классов. Для примера используйте ClassNames для определения порядка размерностей Cost или порядок столбцов классификационных оценок, возвращаемых predict.

  • Выберите подмножество классов для обучения. Например, предположим, что набор всех различных имен классов в Y является {'a','b','c'}. Чтобы обучить модель с помощью наблюдений из классов 'a' и 'c' только, задайте 'ClassNames',{'a','c'}.

Значение по умолчанию для ClassNames - набор всех различных имен классов в переменной отклика в Tbl или Y.

Пример: 'ClassNames',{'b','g'}

Типы данных: categorical | char | string | logical | single | double | cell

Стоимость неправильной классификации, заданная как разделенная разделенными запятой парами, состоящая из 'Cost' и квадратную матрицу или массив структур.

  • Если вы задаете квадратную матрицу Cost и истинный класс наблюдения i, затем Cost(i,j) - стоимость классификации точки в класс j. То есть строки соответствуют истинным классам, а столбцы соответствуют предсказанным классам. Чтобы задать порядок классов для соответствующих строк и столбцов Cost, также задайте ClassNames аргумент пары "имя-значение".

  • Если вы задаете структуру S, тогда он должен иметь два поля:

    • S.ClassNames, который содержит имена классов как переменный совпадающий тип данных as Y

    • S.ClassificationCosts, которая содержит матрицу затрат со строками и столбцами, упорядоченными как в S.ClassNames

Значение по умолчанию для Cost является ones(K) – eye(K), где K - количество различных классов.

Пример: 'Cost',[0 1; 2 0]

Типы данных: single | double | struct

Имена переменных предиктора, заданные как строковые массивы уникальных имен или массив ячеек из уникальных векторов символов. Функциональность PredictorNames зависит от способа предоставления обучающих данных.

  • Если вы поставляете X и Y, тогда можно использовать PredictorNames для назначения имен переменным предиктора в X.

    • Порядок имен в PredictorNames должен соответствовать порядку столбцов X. То есть PredictorNames{1} - имя X(:,1), PredictorNames{2} - имя X(:,2)и так далее. Кроме того, size(X,2) и numel(PredictorNames) должно быть равным.

    • По умолчанию PredictorNames является {'x1','x2',...}.

  • Если вы поставляете Tbl, тогда можно использовать PredictorNames выбрать, какие переменные предиктора использовать в обучении. То есть, fitcauto использует только переменные предиктора в PredictorNames и переменной отклика во время обучения.

    • PredictorNames должен быть подмножеством Tbl.Properties.VariableNames и не может включать имя переменной отклика.

    • По умолчанию PredictorNames содержит имена всех переменных предиктора.

    • Хорошей практикой является определение предикторов для обучения с использованием любой из 'PredictorNames' или formula, но не то и другое.

Пример: 'PredictorNames',{'SepalLength','SepalWidth','PetalLength','PetalWidth'}

Типы данных: string | cell

Предыдущие вероятности для каждого класса, заданные как разделенная разделенными запятой парами, состоящая из 'Prior' и значение в этой таблице.

ЗначениеОписание
'empirical'Предшествующие вероятности классов являются относительными частотами классов в Y.
'uniform'Все предыдущие вероятности классов равны 1/ K, где K - количество классов.
числовой векторКаждый элемент является классом предыдущей вероятности. Упорядочивайте элементы согласно Mdl.ClassNames или укажите порядок с помощью ClassNames аргумент пары "имя-значение". Программное обеспечение нормализует элементы, чтобы сумма 1.
структура

Структурный S с двумя полями:

  • S.ClassNames содержит имена классов как переменная того же типа, что и Y.

  • S.ClassProbs содержит вектор соответствующих априорных вероятностей. Программное обеспечение нормализует элементы, чтобы сумма 1.

Пример: 'Prior',struct('ClassNames',{{'b','g'}},'ClassProbs',1:2)

Типы данных: single | double | char | string | struct

Имя переменной отклика, заданное как вектор символов или строковый скаляр.

  • Если вы поставляете Y, тогда можно использовать 'ResponseName' чтобы задать имя для переменной отклика.

  • Если вы поставляете ResponseVarName или formula, тогда вы не можете использовать 'ResponseName'.

Пример: 'ResponseName','response'

Типы данных: char | string

Преобразование счета, заданное как вектор символов, строковый скаляр или указатель на функцию.

В этой таблице результирующие векторы символов и строковые скаляры.

ЗначениеОписание
'doublelogit'1/(1 + e–2x)
'invlogit'журнал (x/( 1 - x))
'ismax'Устанавливает счет для класса с самым большим счетом равным 1 и устанавливает счета для всех других классов равным 0
'logit'1/(1 + ex)
'none' или 'identity'x (без преобразования)
'sign'-1 для x < 0
0 для x = 0
1 для x > 0
'symmetric'2 x – 1
'symmetricismax'Устанавливает счет для класса с самым большим счетом равным 1 и устанавливает счета для всех других классов равной -1
'symmetriclogit'2/(1 + ex) – 1

Для функции MATLAB или функции, которую вы задаете, используйте указатель на функцию для преобразования счета. Указатель на функцию должен принять матрицу (исходные счета) и вернуть матрицу того же размера (преобразованные счета).

Пример: 'ScoreTransform','logit'

Типы данных: char | string | function_handle

Веса наблюдений, заданные как разделенная разделенными запятой парами, состоящая из 'Weights' и положительный числовой вектор или имя переменной в Tbl. Программа взвешивает каждое наблюдение в X или Tbl с соответствующим значением в Weights. Длина Weights должно равняться количеству строк в X или Tbl.

Если вы задаете входные данные как таблицу Tbl, затем Weights может быть именем переменной в Tbl который содержит числовой вектор. В этом случае необходимо задать Weights как вектор символов или строковый скаляр. Для примера, если вектор весов W хранится как Tbl.W, затем укажите его следующим 'W'. В противном случае программное обеспечение обрабатывает все столбцы Tbl, включая W, как предикторы или переменная отклика при обучении модели.

По умолчанию Weights является ones(n,1), где n количество наблюдений в X или Tbl.

Программное обеспечение нормализует Weights суммировать к значению предшествующей вероятности в соответствующем классе.

Типы данных: single | double | char | string

Выходные аргументы

свернуть все

Обученная классификационная модель, возвращенная как один из объектов классификационной модели в этой таблице.

Имя учащегосяВозвращенный объект модели
'discr'CompactClassificationDiscriminant
'ensemble'CompactClassificationEnsemble
'kernel'
'knn'ClassificationKNN
'linear'
'nb'CompactClassificationNaiveBayes
'svm'
'tree'CompactClassificationTree

Результаты оптимизации, возвращенные как BayesianOptimization объект. Для получения дополнительной информации о процессе оптимизации Байеса, см. Bayesian Optimization.

Подробнее о

свернуть все

Подробное отображение

Когда вы устанавливаете Verbose поле HyperparameterOptimizationOptions аргумент пары "имя-значение" в 1 или 2, fitcauto функция обеспечивает итерационное отображение результатов оптимизации.

В следующей таблице описываются столбцы на отображении и их значения.

Имя столбцаОписание
IterЧисло итерации - можно задать предел на количество итераций при помощи MaxObjectiveEvaluations поле 'HyperparameterOptimizationOptions' аргумент пары "имя-значение".
Active workersКоличество активных параллельных рабочих - Этот столбец появляется только, когда вы запускаете оптимизацию параллельно путем установки UseParallel поле 'HyperparameterOptimizationOptions' аргумент пары "имя-значение" в true.
Eval result

Один из следующих результатов оценки:

  • Best - Значения обучающегося и гиперзначений параметров в этой итерации дают минимальные наблюдаемые потери валидации, вычисленные до сих пор. То есть, Validation loss значение является наименьшим вычисленным на данный момент.

  • Accept - Значения обучающегося и гиперзначений параметров в этой итерации дают значимые (например, не - NaN) наблюдаемые и оцененные значения потерь валидации.

  • Error - Значения обучающегося и гиперзначений параметров при этой итерации приводят к ошибке (например, a Validation loss значение NaN).

Validation lossПотеря валидации, вычисленная для значений учащегося и гиперзначений параметров в этой итерации - в частности, fitcauto вычисляет ошибку классификации перекрестной проверки по умолчанию. Изменить схему валидации можно при помощи CVPartition, Holdout, или Kfold поле 'HyperparameterOptimizationOptions' аргумент пары "имя-значение".
Time for training & validation (sec)Время, затраченное на обучение и вычисление потерь валидации для модели со значениями обучающегося и гиперзначений параметров на этой итерации (в секундах) - в частности, это значение исключает время, необходимое для обновления модели целевой функции, поддерживаемой байесовским процессом оптимизации. Для получения дополнительной информации см. «Байесовская оптимизация».
Observed min validation loss

Наблюдаемые минимальные потери на валидацию, вычисленные до сих пор - Это значение соответствует наименьшему Validation loss значение, вычисленное до сих пор в процессе оптимизации.

По умолчанию, fitcauto возвращает график оптимизации, который отображает темно-синие точки для наблюдаемых минимальных значений потерь при валидации. Этот график не появляется, когда ShowPlots поле 'HyperparameterOptimizationOptions' для аргумента пары "имя-значение" задано значение false.

Estimated min validation loss

Предполагаемые минимальные потери на валидацию - при каждой итерации, fitcauto обновляет модель целевой функции, поддерживаемую Байесовским процессом оптимизации, и использует эту модель, чтобы оценить минимальные потери на валидацию. Для получения дополнительной информации см. «Байесовская оптимизация».

По умолчанию, fitcauto возвращает график оптимизации, который отображает светло-синие точки для предполагаемых минимальных значений потерь при валидации. Этот график не появляется, когда ShowPlots поле 'HyperparameterOptimizationOptions' для аргумента пары "имя-значение" задано значение false.

LearnerТип модели, оцененный на этой итерации - Задайте учащихся, используемых в оптимизации, используя 'Learners' аргумент пары "имя-значение".
Hyperparameter: ValueГиперзначения параметров в этой итерации - задайте гиперпараметры, используемые в оптимизации, используя 'OptimizeHyperparameters' аргумент пары "имя-значение".

Также отображение включает описание двух моделей:

  • Best observed learner - Эта модель с перечисленными типом учащегося и значениями гиперзначений параметров приводит к окончательной наблюдаемой минимальной потере валидации.

  • Best estimated learner - Эта модель с перечисленными типом учащегося и значениями гиперзначений параметров приводит к окончательной предполагаемой минимальной потере валидации. fitcauto переобучает модель на целом наборе обучающих данных и возвращает ее как Mdl выход.

Совет

  • В зависимости от размера ваших данных и количества учащихся, которые вы задаете, fitcauto может занять некоторое время, чтобы запустить. Если у вас есть лицензия Parallel Computing Toolbox, можно ускорить расчеты, запустив оптимизацию параллельно. Для этого задайте 'HyperparameterOptimizationOptions',struct('UseParallel',true). Можно включать другие поля в структуру для управления другими аспектами оптимизации. См. HyperparameterOptimizationOptions.

Алгоритмы

свернуть все

Автоматический выбор учащихся

Когда вы задаете 'Learners','auto', fitcauto Функция анализирует предиктор и данные отклика в порядок, чтобы выбрать соответствующих учащихся. Функция рассматривает, имеет ли набор данных какую-либо из следующих характеристик:

  • Категориальные предикторы

  • Отсутствующие значения для более чем 5% данных

  • Несбалансированные данные, где отношение числа наблюдений в наибольшем классе к количеству наблюдений в наименьшем классе больше 5

  • Более 100 наблюдений в наименьшем классе

  • Широкие данные, где количество предикторов больше или равно количеству наблюдений

  • Высокомерные данные, где количество предикторов больше 100

  • Большие данные, где количество наблюдений больше 50 000

  • Переменная двоичной характеристики

  • Порядковая переменная отклика

Выбранные ученики всегда являются подмножеством из перечисленных в Learners таблица. Однако связанные модели, попробованные в процессе оптимизации, могут иметь различные значения по умолчанию для гиперпараметров, не оптимизируемых, а также различные области значений поиска для оптимизируемых гиперпараметров.

Байесовская оптимизация

Цель байесовской оптимизации и оптимизации в целом состоит в том, чтобы найти точку, которая минимизирует целевую функцию. В контексте fitcauto, точка является типом обучающегося вместе с набором значений гиперзначений параметров для обучающегося (см Learners и OptimizeHyperparameters), и целевой функцией является ошибка классификации перекрестной валидации, по умолчанию. Байесовская оптимизация реализована в fitcauto внутренне поддерживает мульти- TreeBagger модель целевой функции. То есть модель целевой функции разделяется вдоль типа учащегося, и, для данного обучающегося, модель является TreeBagger ансамбль для регрессии. (Эта базовая модель отличается от модели Гауссова процесса, используемой другими функциями Statistics and Machine Learning Toolbox™, которые используют байесовскую оптимизацию.) Байесовская оптимизация обучает базовую модель с помощью вычислений целевой функции и определяет следующую точку для оценки с помощью функции приобретения ('expected-improvement'). Для получения дополнительной информации см. «Ожидаемое улучшение». Функция сбора балансирует между дискретизацией в точках с низкими смоделированными значениями целевой функции и исследованием областей, которые еще не хорошо смоделированы. В конце оптимизации, fitcauto выбирает точку с минимальным значением модели целевой функции, среди точек, оцененных во время оптимизации. Для получения дополнительной информации смотрите 'Criterion','min-visited-mean' Аргумент пары "имя-значение" из bestPoint.

Альтернативная функциональность

  • Если вы не уверены, какие модели работают лучше всего для вашего набора данных, можно также использовать приложение Classification Learner. Используя приложение, можно выполнить настройку гиперпараметра для различных моделей и выбрать оптимизированную модель, которая работает лучше всего. Несмотря на то, что перед настройкой гиперпараметров модели необходимо выбрать конкретную модель, Classification Learner обеспечивает большую гибкость для выбора оптимизируемых гиперпараметров и настройки значений гиперзначений параметров. Однако вы не можете оптимизировать параллельно, выберите 'linear' или 'kernel' учащиеся, задайте веса наблюдений или укажите предыдущие вероятности в приложении. Для получения дополнительной информации смотрите Оптимизацию Гипероптимизации параметров управления в Приложении Classification Learner.

  • Если вы знаете, какие модели могут удовлетворить вашим данным, можно также использовать соответствующие функции подгонки модели и задать 'OptimizeHyperparameters' аргумент пары "имя-значение" для настройки гиперпараметров. Можно сравнить результаты по моделям, чтобы выбрать лучший классификатор. Для примера этого процесса см. «Движение к автоматизации выбора модели с помощью байесовской оптимизации».

Расширенные возможности

Введенный в R2020a
Для просмотра документации необходимо авторизоваться на сайте