Проверяйте валидность уравнения или неравенства
logicalИспользование logical проверить, 3/5 ли меньше 2/3:
logical(sym(3)/5 < sym(2)/3)
ans = logical 1
logicalПроверяйте валидность этого уравнения, используя logical. Без дополнительного предположения, что x неотрицательно, это уравнение недопустимо.
syms x logical(x == sqrt(x^2))
ans = logical 0
Использовать assume чтобы задать предположение, что x неотрицательная. Теперь выражение sqrt(x^2) вычисляет, чтобы x, и logical возвращает 1:
assume(x >= 0) logical(x == sqrt(x^2))
ans = logical 1
Обратите внимание, что logical обычно игнорирует допущения к переменным.
syms x assume(x == 5) logical(x == 5)
ans = logical 0
Чтобы сравнить выражения с учетом допущений по их переменным, используйте isAlways:
isAlways(x == 5)
ans = logical 1
Для дальнейших расчетов очистите предположение о x путем воссоздания его с помощью syms:
syms x
logicalПроверьте, действительны ли оба следующих условия. Чтобы проверить, действительны ли несколько условий одновременно, объедините эти условия с помощью логического оператора and или его ярлык &.
syms x logical(1 < 2 & x == x)
ans = logical 1
logicalПроверяйте это неравенство. Обратите внимание, что logical оценивает левую часть неравенства.
logical(sym(11)/4 - sym(1)/2 > 2)
ans = logical 1
logical также оценивает более сложные символьные выражения с обеих сторон уравнений и неравенств. Для примера он оценивает интеграл в левой части этого уравнения:
syms x logical(int(x, x, 0, 2) - 1 == 1)
ans = logical 1
logical и isAlwaysНе используйте logical проверить уравнения и неравенства, которые требуют упрощения или математических преобразований. Для таких уравнений и неравенств logical может привести к непредвиденным результатам. Для примера, logical не распознает математическую эквивалентность этих выражений:
syms x logical(sin(x)/cos(x) == tan(x))
ans = logical 0
logical также не понимает, что это неравенство недопустимо:
logical(sin(x)/cos(x) ~= tan(x))
ans = logical 1
Чтобы проверить валидность уравнений и неравенств, которые требуют упрощения или математических преобразований, используйте isAlways:
isAlways(sin(x)/cos(x) == tan(x))
ans =
logical
1isAlways(sin(x)/cos(x) ~= tan(x))
Warning: Unable to prove 'sin(x)/cos(x) ~= tan(x)'. ans = logical 0
Для символьных уравнений, logical возвращает логический 1 (true) только если левая и правая стороны идентичны. В противном случае возвращается логический 0 (false).
Для символьных неравенств, построенных с ~=, logical возвращает логический 0 (false) только если левая и правая стороны идентичны. В противном случае возвращается логический 1 (true).
Для всех других неравенств (построенных с <, <=, >, или >=), logical возвращает логический 1 если это может доказать, что неравенство является допустимым и логическим 0 если это может доказать, что неравенство недопустимо. Если logical не может определить, является ли такое неравенство допустимым или нет, это выдает ошибку.
logical оценивает выражения с обеих сторон уравнения или неравенства, но не упрощает или математически не преобразует их. Чтобы сравнить два выражения, применяющие математические преобразования и упрощения, используйте isAlways.
logical обычно игнорирует допущения к переменным.
assume | assumeAlso | assumptions | in | isAlways | isequal | isequaln | isfinite | isinf | isnan | sym | syms