Оцените модель глубокого обучения для пользовательских учебных циклов
Использование dlfeval оценивать пользовательские модели глубокого обучения для пользовательских учебных циклов.
Совет
Для большинства задач глубокого обучения можно использовать предварительно обученную сеть и адаптировать ее к собственным данным. Для примера, показывающего, как использовать передачу обучения, чтобы переобучить сверточную нейронную сеть, чтобы классифицировать новый набор изображений, смотрите, Обучают Нейронную сеть для глубокого обучения Классифицировать Новые Изображения. В качестве альтернативы можно создать и обучить нейронные сети с нуля с помощью layerGraph объекты с trainNetwork и trainingOptions функции.
Если trainingOptions функция не обеспечивает опции обучения, в которых вы нуждаетесь для своей задачи, затем можно создать пользовательский учебный цикл с помощью автоматического дифференцирования. Чтобы узнать больше, смотрите, Задают Нейронную сеть для глубокого обучения для Пользовательских Учебных Циклов.
A dlgradient вызов должен быть в функции. Чтобы получить числовое значение градиента, необходимо оценить функциональное использование dlfeval, и аргументом к функции должен быть dlarray. Смотрите использование автоматическое дифференцирование в Deep Learning Toolbox.
Включить правильную оценку градиентов, функционального fun должен использовать только поддерживаемые функции для dlarray. См. Список Функций с Поддержкой dlarray.