Задайте модели GJR

Модель GJR по умолчанию

GJR по умолчанию (P, Q) модель в Econometrics Toolbox™ имеет форму

εt=σtzt,

с Гауссовым инновационным распределением и

σt2=κ+i=1Pγiσti2+j=1Qαjεtj2+j=1QξjI[εtj<0]εtj2.

Функция индикатора I[εtj<0] равняется 1 если εtj<0 и 0 в противном случае. Модель по умолчанию имеет значительное смещение и изолированные отклонения и придает инновациям квадратную форму, в последовательных задержках.

Можно задать модель этой формы с помощью краткого синтаксиса gjr(P,Q). Для входных параметров P и Q, введите номер изолированных отклонений (термины GARCH), P, и изолировал инновации в квадрате (ДУГА и термины рычагов), Q, соответственно. Следующие ограничения применяются:

  • P и Q должны быть неотрицательными целыми числами.

  • Если P> 0, то необходимо также задать Q> 0

Когда вы используете этот краткий синтаксис, gjr создает gjr модель с этими значениями свойств по умолчанию.

СвойствоЗначение по умолчанию
PКоличество терминов GARCH, P
QКоличество ДУГИ и терминов рычагов, Q
Offset0
ConstantNaN
GARCHВектор ячейки из NaNs
ARCHВектор ячейки из NaNs
LeverageВектор ячейки из NaNs
Distribution"Gaussian"

Чтобы присвоить значения не по умолчанию любым свойствам, можно изменить созданную модель с помощью записи через точку.

Чтобы проиллюстрировать, рассмотрите определение модели GJR(1,1)

εt=σtzt,

с Гауссовым инновационным распределением и

σt2=κ+γ1σt12+α1εt12+ξ1I[εt1<0]εt12.

Mdl = gjr(1,1)
Mdl = 
  gjr with properties:

     Description: "GJR(1,1) Conditional Variance Model (Gaussian Distribution)"
    Distribution: Name = "Gaussian"
               P: 1
               Q: 1
        Constant: NaN
           GARCH: {NaN} at lag [1]
            ARCH: {NaN} at lag [1]
        Leverage: {NaN} at lag [1]
          Offset: 0

Созданная модель, Mdl, имеет NaNs для всех параметров модели. NaN значение сигнализирует, что параметр должен быть оценен или в противном случае задан пользователем. Все параметры должны быть заданы, чтобы предсказать или симулировать модель.

Чтобы оценить параметры, введите модель (наряду с данными) к estimate. Это возвращает новый подходящий gjr модель. Подобранная модель имеет оценки параметра для каждого входа NaN значение.

Вызов gjr без любых входных параметров возвращает спецификацию модели GJR(0,0) со значениями свойств по умолчанию:

DefaultMdl = gjr
DefaultMdl = 
  gjr with properties:

     Description: "GJR(0,0) Conditional Variance Model (Gaussian Distribution)"
    Distribution: Name = "Gaussian"
               P: 0
               Q: 0
        Constant: NaN
           GARCH: {}
            ARCH: {}
        Leverage: {}
          Offset: 0

Задайте модель GJR по умолчанию

В этом примере показано, как использовать краткий gjr(P,Q) синтаксис, чтобы задать GJR по умолчанию (P, Q) модель, εt=σtzt с Гауссовым инновационным распределением и

σt2=κ+i=1Pγiσt-i2+j=1Qαjεt-j2+j=1QξjI[εt-j<0]εt-j2.

По умолчанию все параметры в созданной модели имеют неизвестные значения.

Задайте модель GJR(1,1) по умолчанию:

Mdl = gjr(1,1)
Mdl = 
  gjr with properties:

     Description: "GJR(1,1) Conditional Variance Model (Gaussian Distribution)"
    Distribution: Name = "Gaussian"
               P: 1
               Q: 1
        Constant: NaN
           GARCH: {NaN} at lag [1]
            ARCH: {NaN} at lag [1]
        Leverage: {NaN} at lag [1]
          Offset: 0

Выход показывает что созданная модель, Mdl, имеет NaN значения для всех параметров модели: постоянный термин, коэффициент GARCH, коэффициент ДУГИ и коэффициент рычагов. Можно изменить созданную модель с помощью записи через точку или ввести его (наряду с данными) к estimate.

Используя Аргументы в виде пар имя-значение

Самый гибкий способ задать модели GJR использует аргументы пары "имя-значение". Вам не нужно, и при этом вы не в состоянии, чтобы задать значение для каждого свойства модели. gjr значения по умолчанию присвоений к любым свойствам модели вы не делаете (или не может) задавать.

Общий GJR (P, Q) модель имеет форму

yt=μ+εt,

где εt=σtzt и

σt2=κ+i=1Pγiσti2+j=1Qαjεtj2+j=1QξjI[εtj<0]εtj2.

Инновационным распределением может быть t Гауссова или Студента. Распределение по умолчанию является Гауссовым.

Для того, чтобы оценить, предскажите или симулируйте модель, необходимо задать параметрическую форму модели (например, какие задержки соответствуют ненулевым коэффициентам, инновационному распределению), и любые известные значения параметров. Можно установить любые неизвестные параметры, равные NaN, и затем вход модель к estimate (наряду с данными), чтобы получить оцененные значения параметров.

gjrestimate) возвращает модель, соответствующую спецификации модели. Можно изменить модели, чтобы изменить или обновить спецификацию. Введите модели (без NaN значения) к forecast или simulate для прогнозирования и симуляции, соответственно. Вот некоторые технические требования в качестве примера с помощью аргументов name-value.

МодельСпецификация
  • yt=εt

  • εt=σtzt

  • Гауссов zt

  • σt2=κ+γ1σt12+α1εt12+ξ1I[εt1<0]εt12

gjr ('GARCH', NaN, 'ДУГА', NaN...
'Рычаги', NaN)
или gjr(1,1)
  • yt=μ+εt

  • εt=σtzt

  • Студент zt t с неизвестными степенями свободы

  • σt2=κ+γ1σt12+α1εt12+ξ1I[εt1<0]εt12

gjr ('Смещение', NaN, 'GARCH', NaN...
'ДУГА', NaN, 'Рычаги', NaN...
'Распределение', 't')
  • yt=εt

  • εt=σtzt

  • Студент zt t с восемью степенями свободы

  • σt2=0.1+0.6σt12+0.3εt12+0.05I[εt1<0]εt12

gjr ('Констант', 0.1, 'GARCH', 0.6...
'ДУГА', 0.3, 'Рычаги', 0.05...
'Распределение'...
struct ('Имя', 't', 'степень свободы', 8))

Вот полное описание аргументов name-value, которые можно использовать, чтобы задать модели GJR.

Примечание

Вы не можете присвоить значения свойствам P и Q. egarch наборы P равняйтесь самой большой задержке GARCH и Q равняйтесь самой большой задержке с ненулевым инновационным коэффициентом в квадрате, включая коэффициенты рычагов и ДУГУ.

Аргументы name-value для моделей GJR

ИмяСоответствующий термин (термины) модели GJRКогда задать
OffsetСреднее смещение, μВключать ненулевое среднее смещение. Например, 'Offset',0.2. Если вы планируете оценить термин смещения, задайте 'Offset',NaN.
По умолчанию, Offset имеет значение 0 (значение, никакое смещение).
ConstantПостоянный в условной модели отклонения, κУстановить ограничения равенства для κ. Например, если модель знала постоянные 0.1, задайте 'Constant',0.1.
По умолчанию, Constant имеет значение NaN.
GARCHКоэффициенты GARCH, γ1,,γPУстановить ограничения равенства для коэффициентов GARCH. Например, чтобы задать модель GJR(1,1) с γ1=0.6, задайте 'GARCH',0.6.
Только необходимо указать ненулевые элементы GARCH. Если ненулевые коэффициенты в непоследовательных задержках, задают соответствующие задержки с помощью GARCHLags.
Любые коэффициенты, которые вы задаете, должны удовлетворить всем ограничениям стационарности.
GARCHLagsЗадержки, соответствующие ненулевым коэффициентам GARCHGARCHLags не свойство модели.
Используйте этот аргумент в качестве ярлыка для определения GARCH когда ненулевые коэффициенты GARCH соответствуют непоследовательным задержкам. Например, чтобы задать ненулевые коэффициенты GARCH в задержках 1 и 3, e.g., ненулевой γ1 и γ3, задайте 'GARCHLags',[1,3].
Используйте GARCH и GARCHLags вместе задавать известные ненулевые коэффициенты GARCH в непоследовательных задержках. Например, если γ1=0.3 и γ3=0.1, задайте 'GARCH',{0.3,0.1},'GARCHLags',[1,3]
ARCHКоэффициенты ДУГИ, α1,,αQУстановить ограничения равенства для коэффициентов ДУГИ. Например, чтобы задать модель GJR(1,1) с α1=0.3, задайте 'ARCH',0.3.
Только необходимо указать ненулевые элементы ARCH. Если ненулевые коэффициенты в непоследовательных задержках, задают соответствующие задержки с помощью ARCHLags.
ARCHLagsЗадержки, соответствующие ненулевым коэффициентам ДУГИ

ARCHLags не свойство модели.

Используйте этот аргумент в качестве ярлыка для определения ARCH когда ненулевые коэффициенты ДУГИ соответствуют непоследовательным задержкам. Например, чтобы задать ненулевые коэффициенты ДУГИ в задержках 1 и 3, e.g., ненулевой α1 и α3, задайте 'ARCHLags',[1,3].

Используйте ARCH и ARCHLags вместе задавать известные ненулевые коэффициенты ДУГИ в непоследовательных задержках. Например, если α1=0.4 и α3=0.2, задайте 'ARCH',{0.4,0.2},'ARCHLags',[1,3]

LeverageУсильте коэффициенты, ξ1,,ξQ

Установить ограничения равенства для коэффициентов рычагов. Например, чтобы задать модель GJR(1,1) с ξ1=0.1 задайте 'Leverage',0.1.

Только необходимо указать ненулевые элементы Leverage. Если ненулевые коэффициенты в непоследовательных задержках, задают соответствующие задержки с помощью LeverageLags.

LeverageLagsЗадержки, соответствующие ненулевым коэффициентам рычагов

LeverageLags не свойство модели.

Используйте этот аргумент в качестве ярлыка для определения Leverage когда ненулевые коэффициенты рычагов соответствуют непоследовательным задержкам. Например, чтобы задать ненулевые коэффициенты рычагов в задержках 1 и 3, e.g., ненулевой ξ1 и ξ3, задайте 'LeverageLags',[1,3].

Используйте Leverage и LeverageLags вместе задавать известные ненулевые коэффициенты рычагов в непоследовательных задержках. Например, если ξ1=0.1 и ξ3=0.05, задайте 'Leverage',{0.1,0.05},'LeverageLags',[1,3].

DistributionРаспределение инновационного процесса

Используйте этот аргумент, чтобы задать инновационное распределение t Студента. По умолчанию инновационное распределение является Гауссовым.

Например, чтобы задать распределение t с неизвестными степенями свободы, задайте 'Distribution','t'.

Чтобы задать инновационное распределение t с известными степенями свободы, присвойте Distribution структура данных с полями Name и DoF. Например, для распределения t с девятью степенями свободы, задайте 'Distribution',struct('Name','t','DoF',9).

Задайте модель GJR Используя приложение Econometric Modeler

Можно задать структуру задержки, инновационное распределение и рычаги моделей GJR с помощью приложения Econometric Modeler. Приложение обрабатывает все коэффициенты как неизвестные и допускающие оценку, включая параметр степеней свободы для инновационного распределения t.

В командной строке откройте приложение Econometric Modeler.

econometricModeler

В качестве альтернативы откройте приложение из галереи Apps (см. Econometric Modeler).

В приложении вы видите все поддерживаемые модели путем выбора переменной временных рядов для ответа в панели Time Series. Затем на вкладке Econometric Modeler, в разделе Models, кликают по стреле, чтобы отобразить галерею моделей.

Раздел GARCH Models содержит все поддерживаемые условные модели отклонения. Чтобы задать модель GJR, нажмите GJR. Диалоговое окно GJR Model Parameters появляется.

Корректируемые параметры включают:

  • GARCH Degree – Порядок полинома GARCH.

  • ARCH Degree – Порядок полинома ДУГИ. Значение этого параметра также задает порядок полинома рычагов.

  • Include Offset – Включение смещения модели.

  • Innovation Distribution – Инновационное распределение.

Когда вы настраиваете значения параметров, уравнение в разделе Model Equation изменяется, чтобы совпадать с вашими техническими требованиями. Корректируемые параметры соответствуют входному и аргументам пары "имя-значение", описанным в предыдущих разделах и в gjr страница с описанием.

Для получения дополнительной информации об определении моделей с помощью приложения см. Подбирающие Модели к Данным и Задающий Полиномы Оператора Задержки В интерактивном режиме.

Задайте модель GJR со средним смещением

В этом примере показано, как задать GJR (P, Q) модель со средним смещением. Используйте аргументы пары "имя-значение", чтобы задать модель, которая отличается от модели по умолчанию.

Задайте модель GJR(1,1) со средним смещением,

yt=μ+εt,

где εt=σtzt и

σt2=κ+γ1σt-12+α1εt-12+ξ1I[εt-1<0]εt-12.

Mdl = gjr('Offset',NaN,'GARCHLags',1,'ARCHLags',1,...
    'LeverageLags',1)
Mdl = 
  gjr with properties:

     Description: "GJR(1,1) Conditional Variance Model with Offset (Gaussian Distribution)"
    Distribution: Name = "Gaussian"
               P: 1
               Q: 1
        Constant: NaN
           GARCH: {NaN} at lag [1]
            ARCH: {NaN} at lag [1]
        Leverage: {NaN} at lag [1]
          Offset: NaN

Среднее смещение, кажется, в выходе как дополнительный параметр оценено или в противном случае задано.

Задайте модель GJR с непоследовательными задержками

В этом примере показано, как задать модель GJR с ненулевыми коэффициентами в непоследовательных задержках.

Задайте модель GJR(3,1) с ненулевыми терминами GARCH в задержках 1 и 3. Включайте среднее смещение.

Mdl = gjr('Offset',NaN,'GARCHLags',[1,3],'ARCHLags',1,...
    'LeverageLags',1)
Mdl = 
  gjr with properties:

     Description: "GJR(3,1) Conditional Variance Model with Offset (Gaussian Distribution)"
    Distribution: Name = "Gaussian"
               P: 3
               Q: 1
        Constant: NaN
           GARCH: {NaN NaN} at lags [1 3]
            ARCH: {NaN} at lag [1]
        Leverage: {NaN} at lag [1]
          Offset: NaN

Неизвестные ненулевые коэффициенты GARCH соответствуют изолированным отклонениям в задержках 1 и 3. Выход показывает только ненулевые коэффициенты.

Отобразите значение GARCH:

Mdl.GARCH
ans=1×3 cell array
    {[NaN]}    {[0]}    {[NaN]}

GARCH массив ячеек возвращает три элемента. Первые и третьи элементы имеют значение NaN, указание на эти коэффициенты является ненулевым и должно быть оценено или в противном случае задано. По умолчанию, gjr устанавливает временный коэффициент в задержке 2 равных нулю обеспечивать непротиворечивость с индексацией массива ячеек MATLAB®.

Задайте модель GJR с известными значениями параметров

В этом примере показано, как задать модель GJR с известными значениями параметров. Можно использовать такую полностью заданную модель в качестве входа к simulate или forecast.

Задайте модель GJR(1,1)

σt2=0.1+0.6σt-12+0.2εt-12+0.1I[εt-1<0]εt-12

с Гауссовым инновационным распределением.

Mdl = gjr('Constant',0.1,'GARCH',0.6,'ARCH',0.2,...
    'Leverage',0.1)
Mdl = 
  gjr with properties:

     Description: "GJR(1,1) Conditional Variance Model (Gaussian Distribution)"
    Distribution: Name = "Gaussian"
               P: 1
               Q: 1
        Constant: 0.1
           GARCH: {0.6} at lag [1]
            ARCH: {0.2} at lag [1]
        Leverage: {0.1} at lag [1]
          Offset: 0

Поскольку все значения параметров заданы, созданная модель не имеет никакого NaN значения. Функции simulate и forecast не принимайте входные модели с NaN значения.

Задайте Модель GJR с t Инновационным Распределением

В этом примере показано, как задать модель GJR с t инновационным распределением Студента.

Задайте модель GJR(1,1) со средним смещением,

yt=μ+εt,

где εt=σtzt и

σt2=κ+γ1σt-12+α1εt-12+ξ1I[εt-1<0]εt-12.

Принять zt следует за t инновационным распределением Студента с 10 степенями свободы.

tDist = struct('Name','t','DoF',10);
Mdl = gjr('Offset',NaN,'GARCHLags',1,'ARCHLags',1,...
              'LeverageLags',1,'Distribution',tDist)
Mdl = 
  gjr with properties:

     Description: "GJR(1,1) Conditional Variance Model with Offset (t Distribution)"
    Distribution: Name = "t", DoF = 10
               P: 1
               Q: 1
        Constant: NaN
           GARCH: {NaN} at lag [1]
            ARCH: {NaN} at lag [1]
        Leverage: {NaN} at lag [1]
          Offset: NaN

Значение Distribution struct массив с полем Name равняйтесь 't' и поле DoF равняйтесь 10. Когда вы задаете степени свободы, они не оцениваются, если вы вводите модель к estimate.

Смотрите также

Объекты

Функции

Связанные примеры

Больше о