Пропустите воздействия через модель векторного исправления ошибок (VEC)
дополнительные опции использования заданы одними или несколькими аргументами name-value. Например, Y = filter(Mdl,Z,Name,Value)'X',X,'Scale',false задает X как внешние данные о предикторе для компонента регрессии и воздержания от масштабирования воздействий нижним треугольным Фактором Холецкого инновационной ковариационной матрицы модели.
filter вычисляет Y и E использование этого процесса для каждой страницы j в Z.
Если Scale true, затем E (:: = J)L*Z (:: , где J)L = chol(Mdl.Covariance,'lower'). В противном случае, E (:: = J)Z (:: . Установите et = J)E (:: .J)
Y:: yt в этой системе уравнений.J)
Для определений переменной см. Векторную Модель Исправления ошибок.
filter делает вывод simulate. И функции пропускают ряд воздействия через модель, чтобы произвести ответы и инновации. Однако, тогда как simulate генерирует серию среднего нуля, модульного отклонения, независимые Гауссовы воздействия Z сформировать инновации E = L*Z, filter позволяет вам предоставить воздействия от любого распределения.
filter использование этот процесс, чтобы определить источник времени t 0 из моделей, которые включают линейные тренды времени.
Если вы не задаете Y0, затем t 0 = 0.
В противном случае, filter наборы t 0 к size(Y0,1) – Mdl.P. Поэтому временами в компоненте тренда является t = t 0 + 1, t 0 + 2..., t 0 + numobs, где numobs эффективный объем выборки (size(Y,1) после filter удаляет отсутствующие значения). Это соглашение сопоставимо с поведением по умолчанию оценки модели который estimate удаляет первый Mdl.P ответы, уменьшая эффективный объем выборки. Несмотря на то, что filter явным образом использует первый Mdl.P преддемонстрационные ответы в Y0 инициализировать модель, общее количество наблюдений в Y0 и Y (исключая отсутствующие значения), определяет t 0.
[1] Гамильтон, анализ временных рядов Джеймса Д. Принстон, NJ: Издательство Принстонского университета, 1994.
[2] Йохансен, S. Основанный на вероятности вывод в векторных авторегрессивных моделях Cointegrated. Оксфорд: Издательство Оксфордского университета, 1995.
[3] Juselius, K. Модель VAR Cointegrated. Оксфорд: Издательство Оксфордского университета, 2006.
[4] Lütkepohl, H. Новое введение в несколько анализ временных рядов. Берлин: Спрингер, 2005.