Дискретное время или непрерывно-разовая синхронная машина система возбуждения AC1C включая автоматический регулятор напряжения и возбудитель
Simscape / Электрический / Управление / Управление SM
Блок SM AC1C реализует синхронную системную модель возбуждения типа AC1C машины в соответствии с IEEE 421.5-2016 [1].
Используйте этот блок, чтобы смоделировать управление и регулирование полевого напряжения синхронной машины, действующей в качестве генератора с помощью возбудителя вращения AC.
Можно переключиться между непрерывными и дискретными реализациями блока при помощи параметра Sample time. Чтобы сконфигурировать интегратор в течение непрерывного времени, установите свойство Sample time на 0
. Чтобы сконфигурировать интегратор в течение дискретного времени, установите свойство Sample time на положительное, ненулевое значение, или на -1
наследовать шаг расчета от восходящего блока.
Блок SM AC1C составлен из четырех главных компонентов:
Текущий Компенсатор изменяет измеренное терминальное напряжение как функцию терминального тока.
Преобразователь Измерения Напряжения моделирует динамику терминального преобразователя напряжения с помощью фильтра нижних частот.
Компонент Элементов управления Возбуждения сравнивает преобразователь напряжения вывод с терминальной ссылкой напряжения, чтобы произвести ошибку напряжения. Эта ошибка напряжения затем передается через регулятор напряжения, чтобы произвести полевое напряжение возбудителя.
Модели AC Rotating Exciter возбудитель вращения AC, производя полевое напряжение, которое будет применено к управляемой синхронной машине. Блок также питает поле возбудителя текущим (учитывая стандартный символ VFE) назад к системе возбуждения.
Эта схема показывает полную структуру системной модели возбуждения AC1C:
В схеме:
VT и IT являются измеренным терминальным напряжением и текущий из синхронной машины.
VC1 является компенсированным текущим образом терминальным напряжением.
VC является отфильтрованным, компенсированным текущим образом терминальным напряжением.
VREF является ссылочным терминальным напряжением.
VS является напряжением стабилизатора энергосистемы.
EFE и VFE являются полевым напряжением возбудителя и текущий, соответственно.
EFD и IFD являются полевым напряжением и текущий, соответственно.
Следующие разделы описывают каждую из больших частей блока подробно.
Текущий компенсатор моделируется как:
где:
RC является сопротивлением компенсации загрузки.
XC является реактивным сопротивлением компенсации загрузки.
Преобразователь измерения напряжения реализован как блок Low-Pass Filter с временной константой TR. Обратитесь к документации для этого блока для точных дискретных и непрерывных реализаций.
Эта схема иллюстрирует полную структуру элементов управления возбуждения:
В схеме:
SP является входным местоположением точки суммирования для ограничителя перевозбуждения (OEL), ограничителя недовозбуждения (UEL) и напряжений статора текущего ограничителя (SCL). Для получения дополнительной информации об использовании ограничителей с этим блоком смотрите Поле Текущие Ограничители.
Модели блока Lead-Lag дополнительная динамика сопоставлены с регулятором напряжения. Здесь, TC является постоянным временем выполнения заказа, и TB является постоянным временем задержки. Обратитесь к документации для этого блока для точных дискретных и непрерывных реализаций.
Блок Low-Pass Filter моделирует главную динамику регулятора напряжения. Здесь, KA является усилением регулятора, и TA является главной временной константой регулятора. Минимальными и максимальными антизаключительными пределами насыщения для блока является VAmin и VAmax, соответственно.
TO является входным местоположением точки поглощения для OEL, UEL и напряжений SCL. Для получения дополнительной информации об использовании ограничителей с этим блоком смотрите Поле Текущие Ограничители.
Блок Filtered Derivative моделирует путь к обратной связи уровня для стабилизации системы возбуждения. Здесь, KF и TF являются усилением и временной константой этой системы, соответственно. Обратитесь к документации для блока Filtered Derivative для точных дискретных и непрерывных реализаций.
EFEmin и EFEmax являются минимальными и максимальными пределами насыщения для выходного полевого напряжения возбудителя EFE.
Можно использовать различное поле текущие ограничители, чтобы изменить вывод регулятора напряжения под небезопасными условиями работы:
Используйте ограничитель перевозбуждения, чтобы предотвратить перегрев обмотки возбуждения из-за чрезмерной полевой текущей потребности.
Используйте ограничитель недовозбуждения, чтобы повысить полевое возбуждение, когда это будет слишком низко, рискуя десинхронизацией.
Используйте статор текущий ограничитель, чтобы предотвратить перегрев обмоток статора из-за сверхтоков.
Присоедините вывод любого из этих ограничителей в одной из этих точек:
Точка суммирования как часть обратной связи автоматического регулятора напряжения (AVR)
Точка поглощения, чтобы заменить обычное поведение AVR
Если вы используете статор текущий ограничитель в точке суммирования, используйте один вход VSCLsum. Если вы используете статор текущий ограничитель в точке поглощения, используйте и вход VSCLoel перевозбуждения и вход VSCLuel недовозбуждения.
Эта схема иллюстрирует полную структуру возбудителя вращения AC:
В схеме:
Поле возбудителя текущий VFE моделируется как суммирование трех сигналов:
Нелинейные функциональные модели SE(VE) насыщение выходного напряжения возбудителя.
Пропорциональные модели KE термина линейное соотношение между выходным напряжением возбудителя и текущим полем возбудителя.
Эффект размагничивания загрузки, текущей на выходном напряжении возбудителя, моделируется с помощью размагничивания постоянный KD в обратной связи.
Блок Integrator интегрирует различие между EFE и VFE, чтобы сгенерировать выходное напряжение генератора переменного тока возбудителя VE. TE является временной константой для этого процесса.
Нелинейные функциональные модели FEX отбрасывание выходного напряжения возбудителя от регулирования выпрямителя. Эта функция зависит от постоянного KC, который самого является функцией коммутирующегося реактивного сопротивления.
[1] Методические рекомендации IEEE для системных моделей возбуждения для исследований устойчивости энергосистемы. Станд. IEEE 421.5-2016. Пискатауэй, NJ: IEEE-SA, 2016.