Поля классификации для модели выходных кодов с коррекцией ошибок (ECOC) мультикласса
m = margin(Mdl,tbl,ResponseVarName)
m = margin(Mdl,tbl,Y)
m = margin(Mdl,X,Y)
m = margin(___,Name,Value)
возвращает поля классификации (m
= margin(Mdl
,tbl
,ResponseVarName
)m
) для обученной модели Mdl
выходных кодов с коррекцией ошибок (ECOC) мультикласса с помощью данных о предикторе в таблице tbl
и меток класса в tbl.ResponseVarName
.
задает опции с помощью одного или нескольких аргументов пары "имя-значение" в дополнение к любой из комбинаций входных аргументов в предыдущих синтаксисах. Например, можно задать схему декодирования, бинарную функцию потерь ученика и уровень многословия.m
= margin(___,Name,Value
)
Вычислите демонстрационные тестом поля классификации модели ECOC с бинарными учениками SVM.
Загрузите ирисовый набор данных Фишера. Задайте данные о предикторе X
, данные об ответе Y
и порядок классов в Y
.
load fisheriris X = meas; Y = categorical(species); classOrder = unique(Y); % Class order rng(1) % For reproducibility
Обучите модель ECOC с помощью двоичных классификаторов SVM. Задайте 30%-ю выборку затяжки, стандартизируйте предикторы с помощью шаблона SVM и задайте порядок класса.
t = templateSVM('Standardize',true); PMdl = fitcecoc(X,Y,'Holdout',0.30,'Learners',t,'ClassNames',classOrder); Mdl = PMdl.Trained{1}; % Extract trained, compact classifier
PMdl
является моделью ClassificationPartitionedECOC
. Это имеет свойство Trained
, массив ячеек 1 на 1, содержащий модель CompactClassificationECOC
, что программное обеспечение обучило использование набора обучающих данных.
Вычислите демонстрационные тестом поля классификации. Отобразите распределение полей с помощью коробчатой диаграммы.
testInds = test(PMdl.Partition); % Extract the test indices XTest = X(testInds,:); YTest = Y(testInds,:); m = margin(Mdl,XTest,YTest); boxplot(m) title('Test-Sample Margins')
Поле классификации наблюдения является отрицаемой потерей положительного класса минус отрицаемая потеря максимального отрицательного класса. Выберите классификаторы, которые приводят к относительно большим полям.
Выполните выбор функции путем сравнения демонстрационных тестом полей от многоуровневых моделей. Базирующийся только на этом сравнении, модель с самыми большими полями является лучшей моделью.
Загрузите ирисовый набор данных Фишера. Задайте данные о предикторе X
, данные об ответе Y
и порядок классов в Y
.
load fisheriris X = meas; Y = categorical(species); classOrder = unique(Y); % Class order rng(1); % For reproducibility
Разделите набор данных в наборы обучающих данных и наборы тестов. Задайте 30%-ю выборку затяжки для тестирования.
Partition = cvpartition(Y,'Holdout',0.30); testInds = test(Partition); % Indices for the test set XTest = X(testInds,:); YTest = Y(testInds,:);
Partition
задает раздел набора данных.
Задайте эти два набора данных:
fullX
содержит все четыре предиктора.
partX
содержит измерения чашелистика только.
fullX = X; partX = X(:,1:2);
Обучите модель ECOC с помощью двоичных классификаторов SVM для каждого набора предиктора. Задайте определение раздела, стандартизируйте предикторы с помощью шаблона SVM и задайте порядок класса.
t = templateSVM('Standardize',true); fullPMdl = fitcecoc(fullX,Y,'CVPartition',Partition,'Learners',t,... 'ClassNames',classOrder); partPMdl = fitcecoc(partX,Y,'CVPartition',Partition,'Learners',t,... 'ClassNames',classOrder); fullMdl = fullPMdl.Trained{1}; partMdl = partPMdl.Trained{1};
fullPMdl
и partPMdl
являются моделями ClassificationPartitionedECOC
. Каждая модель имеет свойство Trained
, массив ячеек 1 на 1, содержащий модель CompactClassificationECOC
, что программное обеспечение обучило использование соответствующего набора обучающих данных.
Вычислите демонстрационные тестом поля для каждого классификатора. Для каждой модели отобразите распределение полей с помощью коробчатой диаграммы.
fullMargins = margin(fullMdl,XTest,YTest); partMargins = margin(partMdl,XTest(:,1:2),YTest); boxplot([fullMargins partMargins],'Labels',{'All Predictors','Two Predictors'}) title('Boxplots of Test-Sample Margins')
Граничное распределение fullMdl
расположено выше и имеет меньше изменчивости, чем граничное распределение partMdl
.
Mdl
— Полный или компактный мультикласс модель ECOCClassificationECOC
| объект модели CompactClassificationECOC
Полный или компактный мультикласс модель ECOC, заданная как ClassificationECOC
или объект модели CompactClassificationECOC
.
Чтобы создать полную или компактную модель ECOC, смотрите ClassificationECOC
или CompactClassificationECOC
.
tbl
Выборочные данныеВыборочные данные, заданные как таблица. Каждая строка tbl
соответствует одному наблюдению, и каждый столбец соответствует одной переменной прогноза. Опционально, tbl
может содержать дополнительные столбцы для весов наблюдения и переменной отклика. tbl
должен содержать все предикторы, используемые, чтобы обучить Mdl
. Многостолбцовые переменные и массивы ячеек кроме массивов ячеек из символьных векторов не позволены.
Если вы обучаете Mdl
с помощью выборочных данных, содержавшихся в table
, то входные данные для margin
должны также быть в таблице.
Если Mdl.BinaryLearners
содержит линейный или модели классификации ядер (ClassificationLinear
или объекты модели ClassificationKernel
), то вы не можете задать выборочные данные в table
. Вместо этого передайте матрицу (X
), и класс маркирует (Y
).
Когда учебный Mdl
, примите, что вы устанавливаете 'Standardize',true
для объекта шаблона, заданного в аргументе пары "имя-значение" 'Learners'
fitcecoc
. В этом случае, для соответствующего бинарного ученика j
, программное обеспечение стандартизирует столбцы новых данных о предикторе с помощью соответствующих средних значений в Mdl.BinaryLearner{j}.Mu
и стандартных отклонений в Mdl.BinaryLearner{j}.Sigma
.
Типы данных: table
ResponseVarName
— Имя переменной откликаtbl
Имя переменной отклика, заданное как имя переменной в tbl
. Если tbl
содержит переменную отклика, используемую, чтобы обучить Mdl
, то вы не должны задавать ResponseVarName
.
Если вы задаете ResponseVarName
, то необходимо сделать так как вектор символов или представить скаляр в виде строки. Например, если переменная отклика хранится как tbl.y
, то задайте ResponseVarName
как 'y'
. В противном случае программное обеспечение обрабатывает все столбцы tbl
, включая tbl.y
, как предикторы.
Переменная отклика должна быть категориальным, символом, или массивом строк, логическим или числовым вектором или массивом ячеек из символьных векторов. Если переменная отклика является символьным массивом, то каждый элемент должен соответствовать одной строке массива.
Типы данных: char | string
X
Данные о предиктореДанные о предикторе, заданные как числовая матрица.
Каждая строка X
соответствует одному наблюдению, и каждый столбец соответствует одной переменной. Переменные в столбцах X
должны совпасть с переменными, которые обучили классификатор Mdl
.
Количество строк в X
должно равняться количеству строк в Y
.
Когда учебный Mdl
, примите, что вы устанавливаете 'Standardize',true
для объекта шаблона, заданного в аргументе пары "имя-значение" 'Learners'
fitcecoc
. В этом случае, для соответствующего бинарного ученика j
, программное обеспечение стандартизирует столбцы новых данных о предикторе с помощью соответствующих средних значений в Mdl.BinaryLearner{j}.Mu
и стандартных отклонений в Mdl.BinaryLearner{j}.Sigma
.
Типы данных: double | single
Y
Метки классаМетки класса, заданные как категориальное, символ, или массив строк, логический или числовой вектор или массив ячеек из символьных векторов. Y
должен иметь совпадающий тип данных как Mdl.ClassNames
. (Программное обеспечение обрабатывает строковые массивы как массивы ячеек из символьных векторов.)
Количество строк в Y
должно равняться количеству строк в tbl
или X
.
Типы данных: categorical
| char
| string
| logical
| single
| double
| cell
Укажите необязательные аргументы в виде пар ""имя, значение"", разделенных запятыми.
Имя (Name) — это имя аргумента, а значение (Value) — соответствующее значение.
Name
должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.
margin(Mdl,tbl,'y','BinaryLoss','exponential')
задает экспоненциальную бинарную функцию потерь ученика.'BinaryLoss'
— Бинарная функция потерь ученика'hamming'
| 'linear'
| 'logit'
| 'exponential'
| 'binodeviance'
| 'hinge'
| 'quadratic'
| указатель на функциюБинарная функция потерь ученика, заданная как пара, разделенная запятой, состоящая из 'BinaryLoss'
и встроенного имени функции потерь или указателя на функцию.
Эта таблица описывает встроенные функции, где yj является меткой класса для конкретного бинарного ученика (в наборе {-1,1,0}), sj является счетом к наблюдению j, и g (yj, sj) является бинарной формулой потерь.
Значение | Описание | Область счета | g (yj, sj) |
---|---|---|---|
'binodeviance' | Биномиальное отклонение | (–∞,∞) | журнал [1 + exp (–2yjsj)] / [2log (2)] |
'exponential' | Экспоненциал | (–∞,∞) | exp (–yjsj)/2 |
'hamming' | Хэмминг | [0,1] или (– ∞, ∞) | [1 – знак (yjsj)]/2 |
'hinge' | Стержень | (–∞,∞) | макс. (0,1 – yjsj)/2 |
'linear' | Линейный | (–∞,∞) | (1 – yjsj)/2 |
'logit' | Логистический | (–∞,∞) | журнал [1 + exp (–yjsj)] / [2log (2)] |
'quadratic' | Квадратичный | [0,1] | [1 – yj (2sj – 1)] 2/2 |
Программное обеспечение нормирует бинарные потери так, чтобы потеря была 0.5 когда yj = 0. Кроме того, программное обеспечение вычисляет среднюю бинарную потерю для каждого класса.
Для пользовательской бинарной функции потерь, например, customFunction
, задают его указатель на функцию 'BinaryLoss',@customFunction
.
customFunction
имеет эту форму:
bLoss = customFunction(M,s)
M
является K-by-L кодирующий матрицу, сохраненную в Mdl.CodingMatrix
.
s
является 1 L вектором - строкой из очков классификации.
bLoss
является потерей классификации. Этот скаляр агрегировал бинарные потери для каждого ученика в конкретном классе. Например, можно использовать среднюю бинарную потерю, чтобы агрегировать потерю по ученикам для каждого класса.
K является количеством классов.
L является количеством бинарных учеников.
Для примера передачи пользовательской бинарной функции потерь смотрите, Предсказывают Демонстрационные Тестом Метки Модели ECOC Используя Пользовательскую Бинарную Функцию потерь.
Значение BinaryLoss
по умолчанию зависит от областей значений счета, возвращенных бинарными учениками. Эта таблица описывает некоторые значения BinaryLoss
по умолчанию на основе данных предположений.
Предположение | Значение по умолчанию |
---|---|
Все бинарные ученики являются SVMs или или линейный или модели классификации ядер учеников SVM. | 'hinge' |
Все бинарные ученики являются ансамблями, обученными AdaboostM1 или GentleBoost . | 'exponential' |
Все бинарные ученики являются ансамблями, обученными LogitBoost . | 'binodeviance' |
Все бинарные ученики линейны или модели классификации ядер учеников логистической регрессии. Или, вы задаете, чтобы предсказать апостериорные вероятности класса установкой 'FitPosterior',true в fitcecoc . | 'quadratic' |
Чтобы проверять значение по умолчанию, используйте запись через точку, чтобы отобразить свойство BinaryLoss
обученной модели в командной строке.
Пример: 'BinaryLoss','binodeviance'
Типы данных: char
| string
| function_handle
'Decoding'
— Decoding'lossweighted'
(значение по умолчанию) | 'lossbased'
Схема Decoding, которая агрегировала бинарные потери, заданные как пара, разделенная запятой, состоящая из 'Decoding'
и 'lossweighted'
или 'lossbased'
. Для получения дополнительной информации смотрите Бинарную Потерю.
Пример: 'Decoding','lossbased'
'ObservationsIn'
— Размерность наблюдения данных о предикторе'rows'
(значение по умолчанию) | 'columns'
Размерность наблюдения данных о предикторе, заданная как пара, разделенная запятой, состоящая из 'ObservationsIn'
и 'columns'
или 'rows'
. Mdl.BinaryLearners
должен содержать модели ClassificationLinear
.
Если вы ориентируете свою матрицу предиктора так, чтобы наблюдения соответствовали столбцам и задали 'ObservationsIn','columns'
, можно испытать значительное сокращение во время выполнения.
Опции
Опции оценки[]
(значение по умолчанию) | массив структур, возвращенный statset
Опции оценки, заданные как пара, разделенная запятой, состоящая из 'Options'
и массива структур, возвращенного statset
.
Вызвать параллельные вычисления:
Вам нужна лицензия Parallel Computing Toolbox™.
Задайте 'Options',statset('UseParallel',true)
.
'Verbose'
— Уровень многословия0
(значение по умолчанию) | 1
Уровень многословия, заданный как пара, разделенная запятой, состоящая из 'Verbose'
и 0
или 1
. Verbose
управляет количеством диагностических сообщений, что программное обеспечение отображается в Командном окне.
Если Verbose
является 0
, то программное обеспечение не отображает диагностические сообщения. В противном случае программное обеспечение отображает диагностические сообщения.
Пример: 'Verbose',1
Типы данных: single | double
m
Поля классификацииПоля классификации, возвращенные как числовой вектор-столбец или числовая матрица.
Если Mdl.BinaryLearners
содержит модели ClassificationLinear
, то m
является n-by-L вектор, где n является количеством наблюдений в X
, и L является количеством сильных мест регуляризации в линейных моделях классификации (numel(Mdl.BinaryLearners{1}.Lambda)
). Значение m(i,j)
является полем наблюдения i
для модели, обученной с помощью силы регуляризации Mdl.BinaryLearners{1}.Lambda(j)
.
В противном случае m
является вектор-столбцом длины n.
binary loss является функцией класса и счета классификации, который определяет, как хорошо бинарный ученик классифицирует наблюдение в класс.
Предположим следующее:
mkj является элементом (k, j) проекта кодирования матричный M (то есть, код, соответствующий классу k бинарного ученика j).
sj является счетом бинарного ученика j для наблюдения.
g является бинарной функцией потерь.
предсказанный класс для наблюдения.
В loss-based decoding [Escalera и др.], класс, производящий минимальную сумму бинарных потерь по бинарным ученикам, определяет предсказанный класс наблюдения, то есть,
В loss-weighted decoding [Escalera и др.], класс, производящий минимальное среднее значение бинарных потерь по бинарным ученикам, определяет предсказанный класс наблюдения, то есть,
Allwein и др. предполагают, что взвешенное потерей декодирование улучшает точность классификации путем хранения значений потерь для всех классов в том же динамическом диапазоне.
Эта таблица суммирует поддерживаемые функции потерь, где yj является меткой класса для конкретного бинарного ученика (в наборе {-1,1,0}), sj является счетом к наблюдению j и g (yj, sj).
Значение | Описание | Область счета | g (yj, sj) |
---|---|---|---|
'binodeviance' | Биномиальное отклонение | (–∞,∞) | журнал [1 + exp (–2yjsj)] / [2log (2)] |
'exponential' | Экспоненциал | (–∞,∞) | exp (–yjsj)/2 |
'hamming' | Хэмминг | [0,1] или (– ∞, ∞) | [1 – знак (yjsj)]/2 |
'hinge' | Стержень | (–∞,∞) | макс. (0,1 – yjsj)/2 |
'linear' | Линейный | (–∞,∞) | (1 – yjsj)/2 |
'logit' | Логистический | (–∞,∞) | журнал [1 + exp (–yjsj)] / [2log (2)] |
'quadratic' | Квадратичный | [0,1] | [1 – yj (2sj – 1)] 2/2 |
Программное обеспечение нормирует бинарные потери, таким образом, что потеря 0.5, когда yj = 0, и агрегировал использование среднего значения бинарных учеников [Allwein и др.].
Не путайте бинарную потерю с полной потерей классификации (заданный аргументом пары "имя-значение" 'LossFun'
функций объекта loss
и predict
), который измеряется, как хорошо классификатор ECOC выполняет в целом.
classification margin, для каждого наблюдения, различия между отрицательной потерей для истинного класса и максимальной отрицательной потерей среди ложных классов. Если поля находятся в той же шкале, то они служат мерой по уверенности классификации. Среди нескольких классификаторов те, которые приводят к большим полям, лучше.
Чтобы сравнить поля или ребра нескольких классификаторов ECOC, используйте объекты шаблона, чтобы указать, что общий счет преобразовывает функцию среди классификаторов во время обучения.
[1] Allwein, E., Р. Шапайр и И. Зингер. “Уменьшая мультикласс до двоичного файла: подход объединения для поля classifiers”. Журнал Исследования Машинного обучения. Издание 1, 2000, стр 113–141.
[2] Escalera, S., О. Пуджол и П. Радева. “На процессе декодирования в троичных выходных кодах с коррекцией ошибок”. Транзакции IEEE согласно Анализу Шаблона и Искусственному интеллекту. Издание 32, Выпуск 7, 2010, стр 120–134.
[3] Escalera, S., О. Пуджол и П. Радева. “Отделимость троичных кодов для разреженных проектов выходных кодов с коррекцией ошибок”. Шаблон Recogn. Издание 30, Выпуск 3, 2009, стр 285–297.
Эта функция полностью поддерживает "высокие" массивы. Для получения дополнительной информации смотрите Длинные массивы (MATLAB).
Чтобы запуститься параллельно, установите опцию 'UseParallel'
на true
.
Установите поле 'UseParallel'
структуры опций к true
с помощью statset
и задайте аргумент пары "имя-значение" 'Options'
в вызове этой функции.
Например: 'Options',statset('UseParallel',true)
Для получения дополнительной информации смотрите аргумент пары "имя-значение" 'Options'
.
Для более общей информации о параллельных вычислениях смотрите функции MATLAB Выполнения с Автоматической Параллельной Поддержкой (Parallel Computing Toolbox).
ClassificationECOC
| CompactClassificationECOC
| edge
| fitcecoc
| loss
| predict
| resubMargin
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.