kfoldMargin

Поля классификации для наблюдений, не используемых в обучении

Синтаксис

m = kfoldMargin(CVMdl)
m = kfoldMargin(CVMdl,Name,Value)

Описание

пример

m = kfoldMargin(CVMdl) возвращает перекрестные подтвержденные поля классификации, полученные CVMdl, который является перекрестным подтвержденным, модель выходных кодов с коррекцией ошибок (ECOC), состоявшая из линейных моделей классификации. Таким образом, для каждого сгиба kfoldMargin оценивает поля классификации для наблюдений, что это протягивает, когда это обучает использование всех других наблюдений.

m содержит поля классификации для каждой силы регуляризации в линейных моделях классификации, которые включают CVMdl.

пример

m = kfoldMargin(CVMdl,Name,Value) дополнительные опции использования заданы одним или несколькими аргументами пары Name,Value. Например, задайте схему декодирования или уровень многословия.

Входные параметры

развернуть все

Перекрестный подтвержденный, модель ECOC, состоявшая из линейных моделей классификации, заданных как объект модели ClassificationPartitionedLinearECOC. Можно создать модель ClassificationPartitionedLinearECOC с помощью fitcecoc и:

  1. Задавая любую из перекрестной проверки, аргументов пары "имя-значение", например, CrossVal

  2. Установка аргумента пары "имя-значение" Learners 'linear' или линейному шаблону модели классификации, возвращенному templateLinear

Чтобы получить оценки, kfoldMargin применяется, те же данные раньше перекрестный подтверждали модель ECOC (X и Y).

Аргументы в виде пар имя-значение

Укажите необязательные аргументы в виде пар ""имя, значение"", разделенных запятыми. Имя (Name) — это имя аргумента, а значение (Value) — соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.

Бинарная функция потерь ученика, заданная как пара, разделенная запятой, состоящая из 'BinaryLoss' и встроенного имени функции потерь или указателя на функцию.

  • Эта таблица содержит имена и описания встроенных функций, где yj является меткой класса для конкретного бинарного ученика (в наборе {-1,1,0}), sj является счетом к наблюдению j, и g (yj, sj) является бинарной формулой потерь.

    ЗначениеОписаниеОбласть счетаg (yj, sj)
    'binodeviance'Биномиальное отклонение(–∞,∞)журнал [1 + exp (–2yjsj)] / [2log (2)]
    'exponential'Экспоненциал(–∞,∞)exp (–yjsj)/2
    'hamming'Хэмминг[0,1] или (– ∞, ∞)[1 – знак (yjsj)]/2
    'hinge'Стержень(–∞,∞)макс. (0,1 – yjsj)/2
    'linear'Линейный(–∞,∞)(1 – yjsj)/2
    'logit'Логистический(–∞,∞)журнал [1 + exp (–yjsj)] / [2log (2)]
    'quadratic'Квадратичный[0,1][1 – yj (2sj – 1)] 2/2

    Программное обеспечение нормирует бинарные потери, таким образом, что потеря 0.5 когда yj = 0. Кроме того, программное обеспечение вычисляет среднюю бинарную потерю для каждого класса.

  • Для пользовательской бинарной функции потерь, например, customFunction, задают его указатель на функцию 'BinaryLoss',@customFunction.

    customFunction должен иметь эту форму

    bLoss = customFunction(M,s)
    где:

    • M является K-by-L кодирующий матрицу, сохраненную в Mdl.CodingMatrix.

    • s является 1 L вектором - строкой из очков классификации.

    • bLoss является потерей классификации. Этот скаляр агрегировал бинарные потери для каждого ученика в конкретном классе. Например, можно использовать среднюю бинарную потерю, чтобы агрегировать потерю по ученикам для каждого класса.

    • K является количеством классов.

    • L является количеством бинарных учеников.

    Для примера передачи пользовательской бинарной функции потерь смотрите, Предсказывают Демонстрационные Тестом Метки Модели ECOC Используя Пользовательскую Бинарную Функцию потерь.

По умолчанию, если все бинарные ученики являются линейным использованием моделей классификации:

  • SVM, затем BinaryLoss является 'hinge'

  • Логистическая регрессия, затем BinaryLoss является 'quadratic'

Пример: 'BinaryLoss','binodeviance'

Типы данных: char | string | function_handle

Схема Decoding, которая агрегировала бинарные потери, заданные как пара, разделенная запятой, состоящая из 'Decoding' и 'lossweighted' или 'lossbased'. Для получения дополнительной информации смотрите Бинарную Потерю.

Пример: 'Decoding','lossbased'

Опции оценки, заданные как пара, разделенная запятой, состоящая из 'Options' и массива структур, возвращенного statset.

Вызвать параллельные вычисления:

  • Вам нужна лицензия Parallel Computing Toolbox™.

  • Задайте 'Options',statset('UseParallel',true).

Уровень многословия, заданный как пара, разделенная запятой, состоящая из 'Verbose' и 0 или 1. Verbose управляет количеством диагностических сообщений, что программное обеспечение отображается в Командном окне.

Если Verbose является 0, то программное обеспечение не отображает диагностические сообщения. В противном случае программное обеспечение отображает диагностические сообщения.

Пример: 'Verbose',1

Типы данных: single | double

Выходные аргументы

развернуть все

Перекрестные подтвержденные поля классификации, возвращенные как числовой вектор или матрица.

m является n-by-L, где n является количеством наблюдений в X, и L является количеством сильных мест регуляризации в Mdl (то есть, numel(Mdl.Lambda)).

m(i,j) является перекрестным подтвержденным полем классификации наблюдения i с помощью модели ECOC, состоявшей из линейных моделей классификации, который имеет силу регуляризации Mdl.Lambda(j).

Примеры

развернуть все

Загрузите набор данных NLP.

load nlpdata

X является разреженной матрицей данных о предикторе, и Y является категориальным вектором меток класса.

Для простоты используйте метку 'другие' для всех наблюдений в Y, которые не являются 'simulink', 'dsp' или 'comm'.

Y(~(ismember(Y,{'simulink','dsp','comm'}))) = 'others';

Перекрестный подтвердите мультикласс, линейную модель классификации.

rng(1); % For reproducibility 
CVMdl = fitcecoc(X,Y,'Learner','linear','CrossVal','on');

CVMdl является моделью ClassificationPartitionedLinearECOC. По умолчанию программное обеспечение реализует 10-кратную перекрестную проверку. Можно изменить количество сгибов с помощью аргумента пары "имя-значение" 'KFold'.

Оцените поля k-сгиба.

m = kfoldMargin(CVMdl);
size(m)
ans = 1×2

       31572           1

m 31572 1 вектор. m(j) является средним значением полей из сгиба для наблюдения j.

Постройте поля k-сгиба с помощью диаграмм.

figure;
boxplot(m);
h = gca;
h.YLim = [-5 5];
title('Distribution of Cross-Validated Margins')

Один способ выполнить выбор функции состоит в том, чтобы сравнить поля k-сгиба от многоуровневых моделей. Базирующийся только на этом критерии, классификатор с большими полями является лучшим классификатором.

Загрузите набор данных NLP. Предварительно обработайте данные как в Оценочных Полях Перекрестной проверки k-сгиба и ориентируйте данные о предикторе так, чтобы наблюдения соответствовали столбцам.

load nlpdata
Y(~(ismember(Y,{'simulink','dsp','comm'}))) = 'others';
X = X';

Создайте эти два набора данных:

  • fullX содержит все предикторы.

  • partX содержит 1/2 предикторов, выбранных наугад.

rng(1); % For reproducibility
p = size(X,1); % Number of predictors
halfPredIdx = randsample(p,ceil(0.5*p));
fullX = X;
partX = X(halfPredIdx,:);

Создайте линейный шаблон модели классификации, который задает оптимизацию использования целевой функции SpaRSA.

t = templateLinear('Solver','sparsa');

Перекрестный подтвердите две модели ECOC, состоявшие из двоичного файла, линейных моделей классификации: тот, который использует все предикторы и тот, который использует половину предикторов. Укажите, что наблюдения соответствуют столбцам.

CVMdl = fitcecoc(fullX,Y,'Learners',t,'CrossVal','on',...
    'ObservationsIn','columns');
PCVMdl = fitcecoc(partX,Y,'Learners',t,'CrossVal','on',...
    'ObservationsIn','columns');

CVMdl и PCVMdl являются моделями ClassificationPartitionedLinearECOC.

Оцените поля k-сгиба для каждого классификатора. Постройте распределение наборов полей k-сгиба с помощью диаграмм.

fullMargins = kfoldMargin(CVMdl);
partMargins = kfoldMargin(PCVMdl);

figure;
boxplot([fullMargins partMargins],'Labels',...
    {'All Predictors','Half of the Predictors'});
h = gca;
h.YLim = [-1 1];
title('Distribution of Cross-Validated Margins')

Дистрибутивы полей k-сгиба этих двух классификаторов подобны.

Чтобы определить хорошую силу штрафа лассо для линейной модели классификации, которая использует ученика логистической регрессии, сравните дистрибутивы полей k-сгиба.

Загрузите набор данных NLP. Предварительно обработайте данные как в Выборе Функции Используя Поля k-сгиба.

load nlpdata
Y(~(ismember(Y,{'simulink','dsp','comm'}))) = 'others';
X = X';

Создайте набор 11 логарифмически распределенных сильных мест регуляризации от 10-8 через 101.

Lambda = logspace(-8,1,11);

Создайте линейный шаблон модели классификации, который задает логистическую регрессию использования со штрафом лассо, использование каждых из сильных мест регуляризации, оптимизация использования целевой функции SpaRSA и сокращения допуска на градиенте целевой функции к 1e-8.

t = templateLinear('Learner','logistic','Solver','sparsa',...
    'Regularization','lasso','Lambda',Lambda,'GradientTolerance',1e-8);

Перекрестный подтвердите модель ECOC, состоявшую из двоичного файла, линейные модели классификации с помощью 5-кратной перекрестной проверки и этого

rng(10); % For reproducibility
CVMdl = fitcecoc(X,Y,'Learners',t,'ObservationsIn','columns','KFold',5)
CVMdl = 
  classreg.learning.partition.ClassificationPartitionedLinearECOC
    CrossValidatedModel: 'Linear'
           ResponseName: 'Y'
        NumObservations: 31572
                  KFold: 5
              Partition: [1×1 cvpartition]
             ClassNames: [comm    dsp    simulink    others]
         ScoreTransform: 'none'


  Properties, Methods

CVMdl является моделью ClassificationPartitionedLinearECOC.

Оцените поля k-сгиба для каждой силы регуляризации. Музыка к логистической регрессии находится в [0,1]. Примените квадратичную бинарную потерю.

m = kfoldMargin(CVMdl,'BinaryLoss','quadratic');
size(m)
ans = 1×2

       31572          11

m 31572 11 матрица перекрестных подтвержденных полей для каждого наблюдения. Столбцы соответствуют сильным местам регуляризации.

Постройте поля k-сгиба для каждой силы регуляризации.

figure;
boxplot(m)
ylabel('Cross-validated margins')
xlabel('Lambda indices')

Несколько значений Lambda приводят к столь же высоким граничным центрам дистрибуции с низкими спредами. Более высокие значения Lambda приводят к разреженности переменной прогноза, которая является хорошим качеством классификатора.

Выберите силу регуляризации, которая происходит непосредственно перед тем, как граничный центр дистрибуции начинает уменьшаться, и распространение начинает увеличиваться.

LambdaFinal = Lambda(5);

Обучите модель ECOC, состоявшую из линейной модели классификации использование целого набора данных, и задайте силу регуляризации LambdaFinal.

t = templateLinear('Learner','logistic','Solver','sparsa',...
    'Regularization','lasso','Lambda',Lambda(5),'GradientTolerance',1e-8);
MdlFinal = fitcecoc(X,Y,'Learners',t,'ObservationsIn','columns');

Чтобы оценить метки для новых наблюдений, передайте MdlFinal и новые данные к predict.

Больше о

развернуть все

Ссылки

[1] Allwein, E., Р. Шапайр и И. Зингер. “Уменьшая мультикласс до двоичного файла: подход объединения для поля classifiers”. Журнал Исследования Машинного обучения. Издание 1, 2000, стр 113–141.

[2] Escalera, S., О. Пуджол и П. Радева. “На процессе декодирования в троичных выходных кодах с коррекцией ошибок”. Транзакции IEEE согласно Анализу Шаблона и Искусственному интеллекту. Издание 32, Выпуск 7, 2010, стр 120–134.

[3] Escalera, S., О. Пуджол и П. Радева. “Отделимость троичных кодов для разреженных проектов выходных кодов с коррекцией ошибок”. Шаблон Recogn. Издание 30, Выпуск 3, 2009, стр 285–297.

Расширенные возможности

Введенный в R2016a