Поля классификации для наблюдений, не используемых в обучении
m = kfoldMargin(CVMdl)
m = kfoldMargin(CVMdl,Name,Value)
возвращает перекрестные подтвержденные поля классификации, полученные m
= kfoldMargin(CVMdl
)CVMdl
, который является перекрестным подтвержденным, модель выходных кодов с коррекцией ошибок (ECOC), состоявшая из линейных моделей классификации. Таким образом, для каждого сгиба kfoldMargin
оценивает поля классификации для наблюдений, что это протягивает, когда это обучает использование всех других наблюдений.
m
содержит поля классификации для каждой силы регуляризации в линейных моделях классификации, которые включают CVMdl
.
дополнительные опции использования заданы одним или несколькими аргументами пары m
= kfoldMargin(CVMdl
,Name,Value
)Name,Value
. Например, задайте схему декодирования или уровень многословия.
CVMdl
— Перекрестный подтвержденный, модель ECOC, состоявшая из линейных моделей классификацииClassificationPartitionedLinearECOC
Перекрестный подтвержденный, модель ECOC, состоявшая из линейных моделей классификации, заданных как объект модели ClassificationPartitionedLinearECOC
. Можно создать модель ClassificationPartitionedLinearECOC
с помощью fitcecoc
и:
Задавая любую из перекрестной проверки, аргументов пары "имя-значение", например, CrossVal
Установка аргумента пары "имя-значение" Learners
'linear'
или линейному шаблону модели классификации, возвращенному templateLinear
Чтобы получить оценки, kfoldMargin применяется, те же данные раньше перекрестный подтверждали модель ECOC (X
и Y
).
Укажите необязательные аргументы в виде пар ""имя, значение"", разделенных запятыми.
Имя (Name) — это имя аргумента, а значение (Value) — соответствующее значение.
Name
должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.
'BinaryLoss'
— Бинарная функция потерь ученика'hamming'
| 'linear'
| 'logit'
| 'exponential'
| 'binodeviance'
| 'hinge'
| 'quadratic'
| указатель на функциюБинарная функция потерь ученика, заданная как пара, разделенная запятой, состоящая из 'BinaryLoss'
и встроенного имени функции потерь или указателя на функцию.
Эта таблица содержит имена и описания встроенных функций, где yj является меткой класса для конкретного бинарного ученика (в наборе {-1,1,0}), sj является счетом к наблюдению j, и g (yj, sj) является бинарной формулой потерь.
Значение | Описание | Область счета | g (yj, sj) |
---|---|---|---|
'binodeviance' | Биномиальное отклонение | (–∞,∞) | журнал [1 + exp (–2yjsj)] / [2log (2)] |
'exponential' | Экспоненциал | (–∞,∞) | exp (–yjsj)/2 |
'hamming' | Хэмминг | [0,1] или (– ∞, ∞) | [1 – знак (yjsj)]/2 |
'hinge' | Стержень | (–∞,∞) | макс. (0,1 – yjsj)/2 |
'linear' | Линейный | (–∞,∞) | (1 – yjsj)/2 |
'logit' | Логистический | (–∞,∞) | журнал [1 + exp (–yjsj)] / [2log (2)] |
'quadratic' | Квадратичный | [0,1] | [1 – yj (2sj – 1)] 2/2 |
Программное обеспечение нормирует бинарные потери, таким образом, что потеря 0.5 когда yj = 0. Кроме того, программное обеспечение вычисляет среднюю бинарную потерю для каждого класса.
Для пользовательской бинарной функции потерь, например, customFunction
, задают его указатель на функцию 'BinaryLoss',@customFunction
.
customFunction
должен иметь эту форму
bLoss = customFunction(M,s)
M
является K-by-L кодирующий матрицу, сохраненную в Mdl.CodingMatrix
.
s
является 1 L вектором - строкой из очков классификации.
bLoss
является потерей классификации. Этот скаляр агрегировал бинарные потери для каждого ученика в конкретном классе. Например, можно использовать среднюю бинарную потерю, чтобы агрегировать потерю по ученикам для каждого класса.
K является количеством классов.
L является количеством бинарных учеников.
Для примера передачи пользовательской бинарной функции потерь смотрите, Предсказывают Демонстрационные Тестом Метки Модели ECOC Используя Пользовательскую Бинарную Функцию потерь.
По умолчанию, если все бинарные ученики являются линейным использованием моделей классификации:
SVM, затем BinaryLoss
является 'hinge'
Логистическая регрессия, затем BinaryLoss
является 'quadratic'
Пример: 'BinaryLoss','binodeviance'
Типы данных: char
| string
| function_handle
'Decoding'
— Decoding'lossweighted'
(значение по умолчанию) | 'lossbased'
Схема Decoding, которая агрегировала бинарные потери, заданные как пара, разделенная запятой, состоящая из 'Decoding'
и 'lossweighted'
или 'lossbased'
. Для получения дополнительной информации смотрите Бинарную Потерю.
Пример: 'Decoding','lossbased'
Опции
Опции оценки[]
(значение по умолчанию) | массив структур, возвращенный statset
Опции оценки, заданные как пара, разделенная запятой, состоящая из 'Options'
и массива структур, возвращенного statset
.
Вызвать параллельные вычисления:
Вам нужна лицензия Parallel Computing Toolbox™.
Задайте 'Options',statset('UseParallel',true)
.
'Verbose'
— Уровень многословия0
(значение по умолчанию) | 1
Уровень многословия, заданный как пара, разделенная запятой, состоящая из 'Verbose'
и 0
или 1
. Verbose
управляет количеством диагностических сообщений, что программное обеспечение отображается в Командном окне.
Если Verbose
является 0
, то программное обеспечение не отображает диагностические сообщения. В противном случае программное обеспечение отображает диагностические сообщения.
Пример: 'Verbose',1
Типы данных: single | double
m
Перекрестные подтвержденные поля классификацииПерекрестные подтвержденные поля классификации, возвращенные как числовой вектор или матрица.
m
является n-by-L, где n является количеством наблюдений в X
, и L является количеством сильных мест регуляризации в Mdl
(то есть, numel(Mdl.Lambda)
).
является перекрестным подтвержденным полем классификации наблюдения i с помощью модели ECOC, состоявшей из линейных моделей классификации, который имеет силу регуляризации m(i,j)
.Mdl.Lambda(j)
Загрузите набор данных NLP.
load nlpdata
X
является разреженной матрицей данных о предикторе, и Y
является категориальным вектором меток класса.
Для простоты используйте метку 'другие' для всех наблюдений в Y
, которые не являются 'simulink'
, 'dsp'
или 'comm'
.
Y(~(ismember(Y,{'simulink','dsp','comm'}))) = 'others';
Перекрестный подтвердите мультикласс, линейную модель классификации.
rng(1); % For reproducibility CVMdl = fitcecoc(X,Y,'Learner','linear','CrossVal','on');
CVMdl
является моделью ClassificationPartitionedLinearECOC
. По умолчанию программное обеспечение реализует 10-кратную перекрестную проверку. Можно изменить количество сгибов с помощью аргумента пары "имя-значение" 'KFold'
.
Оцените поля k-сгиба.
m = kfoldMargin(CVMdl); size(m)
ans = 1×2
31572 1
m
31572 1 вектор. m(j)
является средним значением полей из сгиба для наблюдения j
.
Постройте поля k-сгиба с помощью диаграмм.
figure;
boxplot(m);
h = gca;
h.YLim = [-5 5];
title('Distribution of Cross-Validated Margins')
Один способ выполнить выбор функции состоит в том, чтобы сравнить поля k-сгиба от многоуровневых моделей. Базирующийся только на этом критерии, классификатор с большими полями является лучшим классификатором.
Загрузите набор данных NLP. Предварительно обработайте данные как в Оценочных Полях Перекрестной проверки k-сгиба и ориентируйте данные о предикторе так, чтобы наблюдения соответствовали столбцам.
load nlpdata Y(~(ismember(Y,{'simulink','dsp','comm'}))) = 'others'; X = X';
Создайте эти два набора данных:
fullX
содержит все предикторы.
partX
содержит 1/2 предикторов, выбранных наугад.
rng(1); % For reproducibility p = size(X,1); % Number of predictors halfPredIdx = randsample(p,ceil(0.5*p)); fullX = X; partX = X(halfPredIdx,:);
Создайте линейный шаблон модели классификации, который задает оптимизацию использования целевой функции SpaRSA.
t = templateLinear('Solver','sparsa');
Перекрестный подтвердите две модели ECOC, состоявшие из двоичного файла, линейных моделей классификации: тот, который использует все предикторы и тот, который использует половину предикторов. Укажите, что наблюдения соответствуют столбцам.
CVMdl = fitcecoc(fullX,Y,'Learners',t,'CrossVal','on',... 'ObservationsIn','columns'); PCVMdl = fitcecoc(partX,Y,'Learners',t,'CrossVal','on',... 'ObservationsIn','columns');
CVMdl
и PCVMdl
являются моделями ClassificationPartitionedLinearECOC
.
Оцените поля k-сгиба для каждого классификатора. Постройте распределение наборов полей k-сгиба с помощью диаграмм.
fullMargins = kfoldMargin(CVMdl); partMargins = kfoldMargin(PCVMdl); figure; boxplot([fullMargins partMargins],'Labels',... {'All Predictors','Half of the Predictors'}); h = gca; h.YLim = [-1 1]; title('Distribution of Cross-Validated Margins')
Дистрибутивы полей k-сгиба этих двух классификаторов подобны.
Чтобы определить хорошую силу штрафа лассо для линейной модели классификации, которая использует ученика логистической регрессии, сравните дистрибутивы полей k-сгиба.
Загрузите набор данных NLP. Предварительно обработайте данные как в Выборе Функции Используя Поля k-сгиба.
load nlpdata Y(~(ismember(Y,{'simulink','dsp','comm'}))) = 'others'; X = X';
Создайте набор 11 логарифмически распределенных сильных мест регуляризации от через .
Lambda = logspace(-8,1,11);
Создайте линейный шаблон модели классификации, который задает логистическую регрессию использования со штрафом лассо, использование каждых из сильных мест регуляризации, оптимизация использования целевой функции SpaRSA и сокращения допуска на градиенте целевой функции к 1e-8
.
t = templateLinear('Learner','logistic','Solver','sparsa',... 'Regularization','lasso','Lambda',Lambda,'GradientTolerance',1e-8);
Перекрестный подтвердите модель ECOC, состоявшую из двоичного файла, линейные модели классификации с помощью 5-кратной перекрестной проверки и этого
rng(10); % For reproducibility CVMdl = fitcecoc(X,Y,'Learners',t,'ObservationsIn','columns','KFold',5)
CVMdl = classreg.learning.partition.ClassificationPartitionedLinearECOC CrossValidatedModel: 'Linear' ResponseName: 'Y' NumObservations: 31572 KFold: 5 Partition: [1×1 cvpartition] ClassNames: [comm dsp simulink others] ScoreTransform: 'none' Properties, Methods
CVMdl
является моделью ClassificationPartitionedLinearECOC
.
Оцените поля k-сгиба для каждой силы регуляризации. Музыка к логистической регрессии находится в [0,1]. Примените квадратичную бинарную потерю.
m = kfoldMargin(CVMdl,'BinaryLoss','quadratic'); size(m)
ans = 1×2
31572 11
m
31572 11 матрица перекрестных подтвержденных полей для каждого наблюдения. Столбцы соответствуют сильным местам регуляризации.
Постройте поля k-сгиба для каждой силы регуляризации.
figure; boxplot(m) ylabel('Cross-validated margins') xlabel('Lambda indices')
Несколько значений Lambda
приводят к столь же высоким граничным центрам дистрибуции с низкими спредами. Более высокие значения Lambda
приводят к разреженности переменной прогноза, которая является хорошим качеством классификатора.
Выберите силу регуляризации, которая происходит непосредственно перед тем, как граничный центр дистрибуции начинает уменьшаться, и распространение начинает увеличиваться.
LambdaFinal = Lambda(5);
Обучите модель ECOC, состоявшую из линейной модели классификации использование целого набора данных, и задайте силу регуляризации LambdaFinal
.
t = templateLinear('Learner','logistic','Solver','sparsa',... 'Regularization','lasso','Lambda',Lambda(5),'GradientTolerance',1e-8); MdlFinal = fitcecoc(X,Y,'Learners',t,'ObservationsIn','columns');
Чтобы оценить метки для новых наблюдений, передайте MdlFinal
и новые данные к predict
.
binary loss является функцией класса и счета классификации, который определяет, как хорошо бинарный ученик классифицирует наблюдение в класс.
Предположим следующее:
mkj является элементом (k, j) проекта кодирования матричный M (то есть, код, соответствующий классу k бинарного ученика j).
sj является счетом бинарного ученика j для наблюдения.
g является бинарной функцией потерь.
предсказанный класс для наблюдения.
В loss-based decoding [Escalera и др.], класс, производящий минимальную сумму бинарных потерь по бинарным ученикам, определяет предсказанный класс наблюдения, то есть,
В loss-weighted decoding [Escalera и др.], класс, производящий минимальное среднее значение бинарных потерь по бинарным ученикам, определяет предсказанный класс наблюдения, то есть,
Allwein и др. предполагают, что взвешенное потерей декодирование улучшает точность классификации путем хранения значений потерь для всех классов в том же динамическом диапазоне.
Эта таблица суммирует поддерживаемые функции потерь, где yj является меткой класса для конкретного бинарного ученика (в наборе {-1,1,0}), sj является счетом к наблюдению j и g (yj, sj).
Значение | Описание | Область счета | g (yj, sj) |
---|---|---|---|
'binodeviance' | Биномиальное отклонение | (–∞,∞) | журнал [1 + exp (–2yjsj)] / [2log (2)] |
'exponential' | Экспоненциал | (–∞,∞) | exp (–yjsj)/2 |
'hamming' | Хэмминг | [0,1] или (– ∞, ∞) | [1 – знак (yjsj)]/2 |
'hinge' | Стержень | (–∞,∞) | макс. (0,1 – yjsj)/2 |
'linear' | Линейный | (–∞,∞) | (1 – yjsj)/2 |
'logit' | Логистический | (–∞,∞) | журнал [1 + exp (–yjsj)] / [2log (2)] |
'quadratic' | Квадратичный | [0,1] | [1 – yj (2sj – 1)] 2/2 |
Программное обеспечение нормирует бинарные потери, таким образом, что потеря 0.5, когда yj = 0, и агрегировал использование среднего значения бинарных учеников [Allwein и др.].
Не путайте бинарную потерю с полной потерей классификации (заданный аргументом пары "имя-значение" 'LossFun'
функций объекта loss
и predict
), который измеряется, как хорошо классификатор ECOC выполняет в целом.
classification margin, для каждого наблюдения, различия между отрицательной потерей для истинного класса и максимальной отрицательной потерей среди ложных классов. Если поля находятся в той же шкале, то они служат мерой по уверенности классификации. Среди нескольких классификаторов те, которые приводят к большим полям, лучше.
[1] Allwein, E., Р. Шапайр и И. Зингер. “Уменьшая мультикласс до двоичного файла: подход объединения для поля classifiers”. Журнал Исследования Машинного обучения. Издание 1, 2000, стр 113–141.
[2] Escalera, S., О. Пуджол и П. Радева. “На процессе декодирования в троичных выходных кодах с коррекцией ошибок”. Транзакции IEEE согласно Анализу Шаблона и Искусственному интеллекту. Издание 32, Выпуск 7, 2010, стр 120–134.
[3] Escalera, S., О. Пуджол и П. Радева. “Отделимость троичных кодов для разреженных проектов выходных кодов с коррекцией ошибок”. Шаблон Recogn. Издание 30, Выпуск 3, 2009, стр 285–297.
Чтобы запуститься параллельно, установите опцию 'UseParallel'
на true
.
Установите поле 'UseParallel'
структуры опций к true
с помощью statset
и задайте аргумент пары "имя-значение" 'Options'
в вызове этой функции.
Например: 'Options',statset('UseParallel',true)
Для получения дополнительной информации смотрите аргумент пары "имя-значение" 'Options'
.
Для более общей информации о параллельных вычислениях смотрите функции MATLAB Выполнения с Автоматической Параллельной Поддержкой (Parallel Computing Toolbox).
ClassificationLinear
| ClassificationPartitionedLinearECOC
| kfoldEdge
| kfoldPredict
| margin
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.