Условная модель временных рядов отклонения GJR
Используйте gjr задавать одномерный GJR (Glosten, Jagannathan и Runkle) модель. gjr функция возвращает gjr объект, задающий функциональную форму GJR (P, Q) модель и хранилища ее значения параметров.
Ключевые компоненты gjr модель включает:
Полином GARCH, который состоит из изолированных условных отклонений. Степень обозначается P.
Полином ДУГИ, который состоит из изолированных инноваций в квадрате.
Усильте полином, который состоит из изолированных отрицательных инноваций в квадрате.
Максимум ДУГИ и степеней полинома рычагов, обозначенных Q.
P является максимальной ненулевой задержкой в полиноме GARCH, и Q является максимальной ненулевой задержкой в полиномах рычагов и ДУГЕ. Другие компоненты модели включают инновационное среднее смещение модели, условная постоянная модель отклонения, и инновационное распределение.
Все коэффициенты неизвестны (NaN значения) и допускающий оценку, если вы не задаете их синтаксис аргумента пары "имя-значение" использования значений. Чтобы оценить модели, содержащие все или частично неизвестные определенные данные значений параметров, используйте estimate. Для абсолютно заданных моделей (модели, в которых известны все значения параметров), симулируйте или предскажите ответы с помощью simulate или forecast, соответственно.
возвращает условную дисперсию нулевой степени Mdl = gjrgjr объект.
создает условный объект модели отклонения GJR (Mdl = gjr(P,Q)Mdl) полиномом GARCH со степенью P и ДУГА и полиномы рычагов каждый со степенью Q. Все полиномы содержат все последовательные задержки от 1 до их степеней, и всеми коэффициентами является NaN значения.
Этот краткий синтаксис позволяет вам создать шаблон, в области которого вы задаете полиномиальные степени явным образом. Шаблон модели подходит для неограниченной оценки параметра, то есть, оценки без любых ограничений равенства параметра. Однако после того, как вы создаете модель, можно изменить значения свойств с помощью записи через точку.
свойства наборов или аргументы пары "имя-значение" использования дополнительных опций. Заключите каждое имя свойства в кавычки. Например, Mdl = gjr(Name,Value)'ARCHLags',[1 4],'ARCH',{0.2 0.3} задает два коэффициента ДУГИ в ARCH в задержках 1 и 4.
Этот рукописный синтаксис позволяет вам создать более гибкие модели.
Краткий синтаксис обеспечивает простой способ к вам создать шаблоны модели, которые подходят для неограниченной оценки параметра. Например, чтобы создать модель GJR(1,2), содержащую неизвестные значения параметров, введите:
Mdl = gjr(1,2);
P — Степень полинома GARCHСтепень полинома GARCH, заданная как неотрицательное целое число. В полиноме GARCH и во время t, MATLAB® включает все последовательные условные условия отклонения от задержки t – 1 через задержку t – P.
Можно задать этот аргумент с помощью gjr(P,Q) краткий синтаксис только.
Если P > 0, затем необходимо задать Q как положительное целое число.
Пример: gjr(1,1)
Типы данных: double
Q — Степень полинома ДУГИСтепень полинома ДУГИ, заданная как неотрицательное целое число. В полиноме ДУГИ и во время t, MATLAB включает все последовательные инновационные условия в квадрате (для полинома ДУГИ) и отрицательные инновационные условия в квадрате (для полинома рычагов) от задержки t – 1 через задержку t – Q.
Можно задать этот аргумент с помощью gjr(P,Q) краткий синтаксис только.
Если P > 0, затем необходимо задать Q как положительное целое число.
Пример: gjr(1,1)
Типы данных: double
Задайте дополнительные разделенные запятой пары Name,Value аргументы. Name имя аргумента и Value соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.
Рукописный синтаксис позволяет вам создать модели, в которых некоторые или все коэффициенты известны. Во время оценки, estimate налагает ограничения равенства на любые известные параметры.
'ARCHLags',[1 4],'ARCH',{NaN NaN} задает модель GJR(0,4) и неизвестные, но ненулевые, содействующие матрицы ДУГИ в задержках 1 и 4.'GARCHLags' — Задержки полинома GARCH1:P (значение по умолчанию) | числовой вектор уникальных положительных целых чиселЗадержки полинома GARCH, заданные как разделенная запятой пара, состоящая из 'GARCHLags' и числовой вектор уникальных положительных целых чисел.
GARCHLags ( задержка, соответствующая коэффициенту j)GARCH {. Длины j}GARCHLags и GARCH должно быть равным.
Принятие всех коэффициентов GARCH (заданный GARCH свойство), положительны или NaN значения, max(GARCHLags) определяет значение P свойство.
Пример: 'GARCHLags',[1 4]
Типы данных: double
'ARCHLags' — Задержки полинома ДУГИ 1:Q (значение по умолчанию) | числовой вектор уникальных положительных целых чиселЗадержки полинома ДУГИ, заданные как разделенная запятой пара, состоящая из 'ARCHLags' и числовой вектор уникальных положительных целых чисел.
ARCHLags ( задержка, соответствующая содействующей j)ДУГЕ {. Длины j}ARCHLags и ARCH должно быть равным.
Принятие всей ДУГИ и коэффициентов рычагов (заданный ARCH и Leverage свойства), положительны или NaN значения, max([ARCHLags LeverageLags]) определяет значение Q свойство.
Пример: 'ARCHLags',[1 4]
Типы данных: double
'LeverageLags' — Усильте полиномиальные задержки1:Q (значение по умолчанию) | числовой вектор уникальных положительных целых чиселУсильте полиномиальные задержки, заданные как разделенная запятой пара, состоящая из 'LeverageLags' и числовой вектор уникальных положительных целых чисел.
LeverageLags ( задержка, соответствующая содействующим j)Рычагам {. Длины j}LeverageLags и Leverage должно быть равным.
Принятие всей ДУГИ и коэффициентов рычагов (заданный ARCH и Leverage свойства), положительны или NaN значения, max([ARCHLags LeverageLags]) определяет значение Q свойство.
Пример: 'LeverageLags',1:4
Типы данных: double
Можно установить перезаписываемые значения свойств, когда вы создаете объект модели при помощи синтаксиса аргумента пары "имя-значение", или после того, как вы создаете объект модели при помощи записи через точку. Например, чтобы создать модель GJR(1,1) с неизвестными коэффициентами, и затем задать инновационное распределение t с неизвестными степенями свободы, введите:
Mdl = gjr('GARCHLags',1,'ARCHLags',1);
Mdl.Distribution = "t";P — Степень полинома GARCHЭто свойство доступно только для чтения.
Степень полинома GARCH, заданная как неотрицательное целое число. P максимальная задержка в полиноме GARCH с коэффициентом, который положителен или NaN. Задержки, которые меньше P может иметь коэффициенты, равные 0.
P задает минимальное количество преддемонстрационных условных отклонений, требуемых инициализировать модель.
Если вы используете аргументы пары "имя-значение", чтобы создать модель, то MATLAB реализует одну из этих альтернатив (принимающий, что коэффициент самой большой задержки положителен или NaN):
Если вы задаете GARCHLags, затем P самая большая заданная задержка.
Если вы задаете GARCH, затем P число элементов заданного значения. Если вы также задаете GARCHLags, затем gjr использование GARCHLags определить P вместо этого.
В противном случае, P 0.
Типы данных: double
Q — Максимальная степень ДУГИ и полиномов рычаговЭто свойство доступно только для чтения.
Максимальная степень ДУГИ и полиномов рычагов, заданных как неотрицательное целое число. Q максимальная задержка в ДУГЕ и полиномы рычагов в модели. В любом типе полинома, задержки, которые меньше Q может иметь коэффициенты, равные 0.
Q задает минимальное количество преддемонстрационных инноваций, требуемых инициировать модель.
Если вы используете аргументы пары "имя-значение", чтобы создать модель, то MATLAB реализует одну из этих альтернатив (принимающий коэффициенты самых больших задержек в ДУГЕ, и полиномы рычагов положительны или NaN):
Если вы задаете ARCHLags или LeverageLags, затем Q максимум между этими двумя спецификациями.
Если вы задаете ARCH или Leverage, затем Q максимальное количество элементов между этими двумя спецификациями. Если вы также задаете ARCHLags или LeverageLags, затем gjr использует их значения, чтобы определить Q вместо этого.
В противном случае, Q 0.
Типы данных: double
Constant — Условная постоянная модель отклоненияNaN (значение по умолчанию) | положительная скалярная величинаУсловная модель отклонения, постоянная, заданная как положительная скалярная величина или NaN значение.
Типы данных: double
GARCH — Коэффициенты полинома GARCHNaN значенияКоэффициенты полинома GARCH, заданные как вектор ячейки положительных скалярных величин или NaN значения.
Если вы задаете GARCHLags, затем следующие условия применяются.
Длины GARCH и GARCHLags равны.
GARCH { коэффициент задержки j}GARCHLags (.j)
По умолчанию, GARCH numel(GARCHLags)- 1 вектор ячейки NaN значения.
В противном случае следующие условия применяются.
Длина GARCH P.
GARCH { коэффициент задержки j}j.
По умолчанию, GARCH P- 1 вектор ячейки NaN значения.
Коэффициенты в GARCH соответствуйте коэффициентам в базовом LagOp изолируйте полином оператора, и подвергаются тесту исключения почти неприятия. Если вы устанавливаете коэффициент на 1e–12 или ниже, gjr исключает тот коэффициент и его соответствующую задержку в GARCHLags из модели.
Типы данных: cell
ARCH — Коэффициенты полинома ДУГИNaN значенияКоэффициенты полинома ДУГИ, заданные как вектор ячейки положительных скалярных величин или NaN значения.
Если вы задаете ARCHLags, затем следующие условия применяются.
Длины ARCH и ARCHLags равны.
ДУГА { коэффициент задержки j}ARCHLags (.j)
По умолчанию, ARCH Q- 1 вектор ячейки NaN значения. Для получения дополнительной информации смотрите Q свойство.
В противном случае следующие условия применяются.
Длина ARCH Q.
ДУГА { коэффициент задержки j}j.
По умолчанию, ARCH Q- 1 вектор ячейки NaN значения.
Коэффициенты в ARCH соответствуйте коэффициентам в базовом LagOp изолируйте полином оператора, и подвергаются тесту исключения почти неприятия. Если вы устанавливаете коэффициент на 1e–12 или ниже, gjr исключает тот коэффициент и его соответствующую задержку в ARCHLags из модели.
Типы данных: cell
Leverage — Усильте полиномиальные коэффициентыNaN значенияУсильте полиномиальные коэффициенты, заданные как вектор ячейки числовых скаляров или NaN значения.
Если вы задаете LeverageLags, затем следующие условия применяются.
Длины Leverage и LeverageLags равны.
Рычаги { коэффициент задержки j}LeverageLags (.j)
По умолчанию, Leverage Q- 1 вектор ячейки NaN значения. Для получения дополнительной информации смотрите Q свойство.
В противном случае следующие условия применяются.
Длина Leverage Q.
Рычаги { коэффициент задержки j}j.
По умолчанию, Leverage Q- 1 вектор ячейки NaN значения.
Коэффициенты в Leverage соответствуйте коэффициентам в базовом LagOp изолируйте полином оператора, и подвергаются тесту исключения почти неприятия. Если вы устанавливаете коэффициент на 1e–12 или ниже, gjr исключает тот коэффициент и его соответствующую задержку в LeverageLags из модели.
Типы данных: cell
UnconditionalVariance — Безусловное отклонение моделиЭто свойство доступно только для чтения.
Безусловное отклонение модели, заданное как положительная скалярная величина.
Безусловное отклонение
κ является условной постоянной моделью отклонения (Constant).
Типы данных: double
Offset — Инновационное среднее смещение модели (значение по умолчанию) | числовой скаляр | NaNИнновационное среднее смещение модели или аддитивная постоянная, заданная в виде числа или NaN значение.
Типы данных: double
Distribution — Распределение условной вероятности инновационного процесса"Gaussian" (значение по умолчанию) | "t" | массив структурРаспределение условной вероятности инновационного процесса, заданного как строка или массив структур. gjr хранит значение как массив структур.
| Распределение | Строка | Массив структур |
|---|---|---|
| Гауссов | "Gaussian" | struct('Name',"Gaussian") |
| t студента | "t" | struct('Name',"t",'DoF',DoF) |
'DoF' поле задает параметр степеней свободы распределения t.
DoF > 2 или DoF = NaN.
DoF является допускающим оценку.
Если вы задаете "t", DoF isnan по умолчанию. Можно изменить его значение при помощи записи через точку после того, как вы создадите модель. Например, Mdl.Distribution.DoF = 3.
Если вы предоставляете массив структур, чтобы задать распределение t Студента, то необходимо задать обоих 'Name' и 'DoF' поля .
Пример: struct('Name',"t",'DoF',10)
Description Описание моделиОписание модели, заданное как скаляр строки или вектор символов. gjr хранит значение как скаляр строки. Значение по умолчанию описывает параметрическую форму модели, например
, "GJR(1,1) Conditional Variance Model (Gaussian Distribution)".
Типы данных: string | char
Весь NaN- ценные параметры модели, которые включают коэффициенты и t - степени свободы инновационного распределения (если есть), являются допускающими оценку. Когда вы передаете получившийся gjr объект и данные к estimate, MATLAB оценивает весь NaN- ценные параметры. Во время оценки, estimate обработки известные параметры как ограничения равенства, то есть, estimate содержит любые известные параметры, зафиксированные в их значениях.
Как правило, задержки в ДУГЕ и полиномах рычагов являются тем же самым, но их равенство не является требованием. Отличающиеся полиномы происходят когда:
Любой ARCH{Q} или Leverage{Q} соответствует почти нулевому допуску исключения. В этом случае MATLAB исключает соответствующую задержку из полинома.
Вы задаете полиномы отличающихся длин путем определения ARCHLags или LeverageLags, или путем установки ARCH или Leverage свойство.
В любом случае, Q максимальная задержка между этими двумя полиномами.
estimate | Подбирайте условную модель отклонения к данным |
filter | Пропустите воздействия через условную модель отклонения |
forecast | Предскажите условные отклонения из условных моделей отклонения |
infer | Выведите условные отклонения условных моделей отклонения |
simulate | Симуляция Монте-Карло условных моделей отклонения |
summarize | Отобразите результаты оценки условной модели отклонения |
Создайте gjr по умолчанию объект модели и задает свои значения параметров с помощью записи через точку.
Создайте модель GJR(0,0).
Mdl = gjr
Mdl =
gjr with properties:
Description: "GJR(0,0) Conditional Variance Model (Gaussian Distribution)"
Distribution: Name = "Gaussian"
P: 0
Q: 0
Constant: NaN
GARCH: {}
ARCH: {}
Leverage: {}
Offset: 0
Mdl gjr объект модели. Это содержит неизвестную константу, ее смещением является 0, и инновационным распределением является 'Gaussian'. Модель не имеет GARCH, ДУГИ, или усиливает полиномы.
Задайте две неизвестных ДУГИ и усильте коэффициенты для задержек одна и две записи через точку использования.
Mdl.ARCH = {NaN NaN};
Mdl.Leverage = {NaN NaN};
MdlMdl =
gjr with properties:
Description: "GJR(0,2) Conditional Variance Model (Gaussian Distribution)"
Distribution: Name = "Gaussian"
P: 0
Q: 2
Constant: NaN
GARCH: {}
ARCH: {NaN NaN} at lags [1 2]
Leverage: {NaN NaN} at lags [1 2]
Offset: 0
Q, ARCH, и Leverage свойства обновляются к 2, {NaN NaN}, и {NaN NaN}, соответственно. Две ДУГИ и коэффициенты рычагов сопоставлены с задержками 1 и 2.
Создайте gjr объект модели с помощью краткого обозначения gjr(P,Q), где P степень полинома GARCH и Q степень полиномов рычагов и ДУГИ.
Создайте модель GJR(3,2).
Mdl = gjr(3,2)
Mdl =
gjr with properties:
Description: "GJR(3,2) Conditional Variance Model (Gaussian Distribution)"
Distribution: Name = "Gaussian"
P: 3
Q: 2
Constant: NaN
GARCH: {NaN NaN NaN} at lags [1 2 3]
ARCH: {NaN NaN} at lags [1 2]
Leverage: {NaN NaN} at lags [1 2]
Offset: 0
Mdl gjr объект модели. Все свойства Mdl, кроме PQ, и Distribution, NaN значения. По умолчанию, программное обеспечение:
Включает условную постоянную модель отклонения
Исключает условное среднее смещение модели (т.е. смещением является 0)
Включает все условия задержки в полином GARCH до задержек P
Включает все условия задержки в ДУГУ и полиномы рычагов, чтобы изолировать Q
Mdl задает только функциональную форму модели GJR. Поскольку это содержит неизвестные значения параметров, можно передать Mdl и данные timeseries к estimate оценить параметры.
Создайте gjr аргументы пары "имя-значение" использования модели.
Задайте модель GJR(1,1).
Mdl = gjr('GARCHLags',1,'ARCHLags',1,'LeverageLags',1)
Mdl =
gjr with properties:
Description: "GJR(1,1) Conditional Variance Model (Gaussian Distribution)"
Distribution: Name = "Gaussian"
P: 1
Q: 1
Constant: NaN
GARCH: {NaN} at lag [1]
ARCH: {NaN} at lag [1]
Leverage: {NaN} at lag [1]
Offset: 0
Mdl gjr объект модели. Программное обеспечение устанавливает все параметры на NaN, кроме PQ, Distribution, и Offset (который является 0 по умолчанию).
Начиная с Mdl содержит NaN значения, Mdl только подходит для оценки только. Передайте Mdl и данные timeseries к estimate.
Создайте модель GJR(1,1) со средним смещением
где
и независимый политик и тождественно распределил стандартный Гауссов процесс.
Mdl = gjr('Constant',0.0001,'GARCH',0.35,... 'ARCH',0.1,'Offset',0.5,'Leverage',{0.03 0 0.01})
Mdl =
gjr with properties:
Description: "GJR(1,3) Conditional Variance Model with Offset (Gaussian Distribution)"
Distribution: Name = "Gaussian"
P: 1
Q: 3
Constant: 0.0001
GARCH: {0.35} at lag [1]
ARCH: {0.1} at lag [1]
Leverage: {0.03 0.01} at lags [1 3]
Offset: 0.5
gjr значения по умолчанию присвоений к любым свойствам вы не задаете с аргументами пары "имя-значение". Альтернативным способом задать компонент рычагов является 'Leverage',{0.03 0.01},'LeverageLags',[1 3].
Доступ к свойствам gjr объект модели с помощью записи через точку.
Создайте gjr объект модели.
Mdl = gjr(3,2)
Mdl =
gjr with properties:
Description: "GJR(3,2) Conditional Variance Model (Gaussian Distribution)"
Distribution: Name = "Gaussian"
P: 3
Q: 2
Constant: NaN
GARCH: {NaN NaN NaN} at lags [1 2 3]
ARCH: {NaN NaN} at lags [1 2]
Leverage: {NaN NaN} at lags [1 2]
Offset: 0
Удалите второй срок GARCH из модели. Таким образом, укажите, что коэффициентом GARCH второго изолированного условного отклонения является 0.
Mdl.GARCH{2} = 0Mdl =
gjr with properties:
Description: "GJR(3,2) Conditional Variance Model (Gaussian Distribution)"
Distribution: Name = "Gaussian"
P: 3
Q: 2
Constant: NaN
GARCH: {NaN NaN} at lags [1 3]
ARCH: {NaN NaN} at lags [1 2]
Leverage: {NaN NaN} at lags [1 2]
Offset: 0
Полином GARCH имеет два неизвестных параметра, соответствующие задержкам 1 и 3.
Отобразите распределение воздействий.
Mdl.Distribution
ans = struct with fields:
Name: "Gaussian"
Воздействия являются Гауссовыми со средним значением 0 и отклонением 1.
Укажите, что базовые воздействия имеют t распределение с пятью степенями свободы.
Mdl.Distribution = struct('Name','t','DoF',5)
Mdl =
gjr with properties:
Description: "GJR(3,2) Conditional Variance Model (t Distribution)"
Distribution: Name = "t", DoF = 5
P: 3
Q: 2
Constant: NaN
GARCH: {NaN NaN} at lags [1 3]
ARCH: {NaN NaN} at lags [1 2]
Leverage: {NaN NaN} at lags [1 2]
Offset: 0
Укажите, что коэффициенты ДУГИ 0.2 для первой задержки и 0.1 для второй задержки.
Mdl.ARCH = {0.2 0.1}Mdl =
gjr with properties:
Description: "GJR(3,2) Conditional Variance Model (t Distribution)"
Distribution: Name = "t", DoF = 5
P: 3
Q: 2
Constant: NaN
GARCH: {NaN NaN} at lags [1 3]
ARCH: {0.2 0.1} at lags [1 2]
Leverage: {NaN NaN} at lags [1 2]
Offset: 0
Чтобы оценить остающиеся параметры, можно передать Mdl и ваши данные, чтобы оценить и использовать заданные параметры в качестве ограничений равенства. Или, можно задать остальную часть значений параметров, и затем симулировать или предсказать условные отклонения из модели GARCH путем передачи полностью заданной модели simulate или forecast, соответственно.
Подбирайте модель GJR к ежегодным временным рядам индекса курса акций, возвращается от 1861-1970.
Загрузите набор данных Нельсона-Плоссера. Преобразуйте ежегодные индексы курса акций (SP) к возвратам. Постройте возвраты.
load Data_NelsonPlosser; sp = price2ret(DataTable.SP); figure; plot(dates(2:end),sp); hold on; plot([dates(2) dates(end)],[0 0],'r:'); % Plot y = 0 hold off; title('Returns'); ylabel('Return (%)'); xlabel('Year'); axis tight;

Ряд возврата, кажется, не имеет условное среднее смещение и, кажется, показывает кластеризацию энергозависимости. Таким образом, изменчивость меньше в течение более ранних лет, чем это в течение более поздних лет. В данном примере примите, что модель GJR(1,1) подходит для этого ряда.
Создайте модель GJR(1,1). Условное среднее смещение является нулем по умолчанию. Программное обеспечение включает условную модель отклонения, постоянную по умолчанию.
Mdl = gjr('GARCHLags',1,'ARCHLags',1,'LeverageLags',1);
Подбирайте модель GJR(1,1) к данным.
EstMdl = estimate(Mdl,sp);
GJR(1,1) Conditional Variance Model (Gaussian Distribution):
Value StandardError TStatistic PValue
_________ _____________ __________ ________
Constant 0.0045728 0.0044199 1.0346 0.30086
GARCH{1} 0.55808 0.24 2.3253 0.020057
ARCH{1} 0.20461 0.17886 1.144 0.25263
Leverage{1} 0.18066 0.26802 0.67406 0.50027
EstMdl полностью заданный gjr объект модели. Таким образом, это не содержит NaN значения. Можно оценить соответствие модели путем генерации остаточных значений с помощью infer, и затем анализ их.
Чтобы симулировать условные отклонения или ответы, передайте EstMdl к simulate.
Чтобы предсказать инновации, передайте EstMdl к forecast.
Симулируйте условное отклонение или пути к ответу от полностью заданного gjr объект модели. Таким образом, симулируйте от предполагаемого gjr модель или известный gjr модель, в которой вы задаете все значения параметров.
Загрузите набор данных Нельсона-Плоссера. Преобразуйте ежегодные индексы курса акций в возвраты.
load Data_NelsonPlosser;
sp = price2ret(DataTable.SP);Создайте модель GJR(1,1). Подбирайте модель к ряду возврата.
Mdl = gjr(1,1); EstMdl = estimate(Mdl,sp);
GJR(1,1) Conditional Variance Model (Gaussian Distribution):
Value StandardError TStatistic PValue
_________ _____________ __________ ________
Constant 0.0045728 0.0044199 1.0346 0.30086
GARCH{1} 0.55808 0.24 2.3253 0.020057
ARCH{1} 0.20461 0.17886 1.144 0.25263
Leverage{1} 0.18066 0.26802 0.67406 0.50027
Симулируйте 100 путей условных отклонений и ответов из предполагаемой модели GJR.
numObs = numel(sp); % Sample size (T) numPaths = 100; % Number of paths to simulate rng(1); % For reproducibility [VSim,YSim] = simulate(EstMdl,numObs,'NumPaths',numPaths);
VSim и YSim T- numPaths матрицы. Строки соответствуют периоду расчета, и столбцы соответствуют симулированному пути.
Постройте среднее значение и процентили на 2,5% и на 97,5% симулированных путей. Сравните статистику симуляции с исходными данными.
dates = dates(2:end); VSimBar = mean(VSim,2); VSimCI = quantile(VSim,[0.025 0.975],2); YSimBar = mean(YSim,2); YSimCI = quantile(YSim,[0.025 0.975],2); figure; subplot(2,1,1); h1 = plot(dates,VSim,'Color',0.8*ones(1,3)); hold on; h2 = plot(dates,VSimBar,'k--','LineWidth',2); h3 = plot(dates,VSimCI,'r--','LineWidth',2); hold off; title('Simulated Conditional Variances'); ylabel('Cond. var.'); xlabel('Year'); axis tight; subplot(2,1,2); h1 = plot(dates,YSim,'Color',0.8*ones(1,3)); hold on; h2 = plot(dates,YSimBar,'k--','LineWidth',2); h3 = plot(dates,YSimCI,'r--','LineWidth',2); hold off; title('Simulated Nominal Returns'); ylabel('Nominal return (%)'); xlabel('Year'); axis tight; legend([h1(1) h2 h3(1)],{'Simulated path' 'Mean' 'Confidence bounds'},... 'FontSize',7,'Location','NorthWest');

Предскажите условные отклонения от полностью заданного gjr объект модели. Таким образом, предсказанный от предполагаемого gjr модель или известный gjr модель, в которой вы задаете все значения параметров.
Загрузите набор данных Нельсона-Плоссера. Преобразуйте ежегодные индексы курса акций (SP) к возвратам.
load Data_NelsonPlosser;
sp = price2ret(DataTable.SP);Создайте модель GJR(1,1) и соответствуйте ей к ряду возврата.
Mdl = gjr('GARCHLags',1,'ARCHLags',1,'LeverageLags',1); EstMdl = estimate(Mdl,sp);
GJR(1,1) Conditional Variance Model (Gaussian Distribution):
Value StandardError TStatistic PValue
_________ _____________ __________ ________
Constant 0.0045728 0.0044199 1.0346 0.30086
GARCH{1} 0.55808 0.24 2.3253 0.020057
ARCH{1} 0.20461 0.17886 1.144 0.25263
Leverage{1} 0.18066 0.26802 0.67406 0.50027
Предскажите условное отклонение номинальных лет серии 10 возврата в будущее с помощью предполагаемой модели GJR. Задайте целый ряд возврата как преддемонстрационные наблюдения. Программное обеспечение выводит преддемонстрационные условные отклонения с помощью преддемонстрационных наблюдений и модели.
numPeriods = 10; vF = forecast(EstMdl,numPeriods,sp);
График предсказанные условные отклонения номинала возвращается. Сравните прогнозы с наблюдаемыми условными отклонениями.
v = infer(EstMdl,sp); nV = size(v,1); dates = dates((end - nV + 1):end); figure; plot(dates,v,'k:','LineWidth',2); hold on; plot(dates(end):dates(end) + 10,[v(end);vF],'r','LineWidth',2); title('Forecasted Conditional Variances of Returns'); ylabel('Conditional variances'); xlabel('Year'); axis tight; legend({'Estimation Sample Cond. Var.','Forecasted Cond. var.'},... 'Location','NorthWest');

Glosten, Jagannathan, and Runkle (GJR) model является динамической моделью, которая обращается к условному выражению heteroscedasticity или кластеризации энергозависимости, в инновационном процессе. Кластеризация энергозависимости происходит, когда инновационный процесс не показывает значительную автокорреляцию, но отклонение изменений процесса со временем.
Модель GJR является обобщением модели GARCH, которая подходит для моделирования асимметричной энергозависимости, кластеризирующейся [1]. А именно, модель устанавливает это, текущее условное отклонение является суммой этих линейных процессов с коэффициентами:
Прошлые условные отклонения (компонент GARCH или полином).
Прошлые инновации в квадрате (компонент ДУГИ или полином).
Прошлые отрицательные инновации в квадрате (компонент рычагов или полином).
Рассмотрите временные ряды
где GJR (P, Q) условный процесс отклонения, , имеет форму
Таблица показывает, как переменные соответствуют свойствам gjr объект. В таблице, I [x <0] = 1, и 0 в противном случае.
| Переменная | Описание | Свойство |
|---|---|---|
| μ | Инновационная средняя модель постоянное смещение | 'Offset' |
| κ > 0 | Условная постоянная модель отклонения | 'Constant' |
| γj | Коэффициенты компонента GARCH | 'GARCH' |
| αj | Коэффициенты компонента ДУГИ | 'ARCH' |
| ξj | Усильте коэффициенты компонента | 'Leverage' |
| zt | Серия независимых случайных переменных со средним значением 0 и отклонением 1 | 'Distribution' |
Для стационарности и положительности, модели GJR используют эти ограничения:
Модели GJR являются соответствующими, когда отрицательные шоки способствуют больше энергозависимости, чем положительные шоки [2].
Если все коэффициенты рычагов являются нулем, то модель GJR уменьшает до модели GARCH. Поскольку модель GARCH вкладывается в модели GJR, можно использовать тесты отношения правдоподобия, чтобы сравнить подгонку модели GARCH с подгонкой модели GJR.
Можно задать gjr модель как часть состава условного среднего значения и моделей отклонения. Для получения дополнительной информации смотрите arima.
[1] Glosten, L. R. Р. Джейгэннэзэн и Д. Э. Ранкл. “На Отношении между Ожидаемым значением и Энергозависимостью Номинального Избыточного Возврата на Запасах”. Журнал Финансов. Издание 48, № 5, 1993, стр 1779–1801.
[2] Tsay, R. S. Анализ Финансовых Временных рядов. 3-й редактор Хобокен, NJ: John Wiley & Sons, Inc., 2010.
У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.