lratiotest

Тест отношения правдоподобия спецификации модели

Описание

пример

h = lratiotest(uLogL,rLogL,dof) возвращает логическое значение (h) с решением отклонения от проведения теста отношения правдоподобия спецификации модели.

lratiotest создает тестовую статистическую величину использование целевой функции логарифмической правдоподобности, выполненной в неограниченных оценках параметра модели (uLogL) и ограниченные оценки параметра модели (rLogL). Тестовое распределение статистической величины имеет dof степени свободы.

  • Если uLogL или rLogL вектор, затем другой должен быть скаляр или вектор равной длины. lratiotest(uLogL,rLogL,dof) обработки каждый элемент векторного входа как отдельный тест, и возвращают вектор решений отклонения.

  • Если uLogL или rLogL вектор-строка, затем lratiotest(uLogL,rLogL,dof) возвращает вектор-строку.

пример

h = lratiotest(uLogL,rLogL,dof,alpha) возвращает решение отклонения о тесте отношения правдоподобия, проводимом на уровне значения alpha.

пример

[h,pValue] = lratiotest(___) возвращает решение отклонения и p - значение (pValue) для теста гипотезы, с помощью любого из входных параметров в предыдущих синтаксисах.

пример

[h,pValue,stat,cValue] = lratiotest(___) дополнительно возвращает тестовую статистическую величину (stat) и критическое значение (cValue) для теста гипотезы.

Примеры

свернуть все

Сравните две спецификации модели для симулированного образования и поступите данные. Неограниченная модель имеет следующую логарифмическую правдоподобность:

l(β,ρ)=-nжурналΓ(ρ)+ρk=1nжурналβk+(ρ-1)k=1nжурнал(yk)-k=1nykβk,

где

  • βk=1β+xk.

  • xk количество классов тот человек k завершенный.

  • yk доход (в тысячах доллара США) человека k.

Таким образом, доход человека k, учитывая количество классов, что человеком k завершенный является Гамма, распределенная с формой ρ и уровень βk. Ограниченные наборы модели ρ=1, который подразумевает, что доход человека k, учитывая количество человека классов k завершенный экспоненциально распределяется со средним значением β+xk.

Ограниченная модель H0:ρ=1. Сравнение этой модели к неограниченной модели с помощью lratiotest требует следующего:

  • Функция логарифмической правдоподобности

  • Оценка наибольшего правдоподобия (MLE) в соответствии с неограниченной моделью

  • MLE в соответствии с ограниченной моделью

Загрузите данные.

load Data_Income1
x = DataTable.EDU;
y = DataTable.INC;

Чтобы оценить неограниченные параметры модели, максимизировать l(ρ,β) относительно ρ и β. Градиент l(ρ,β)

l(ρ,β)ρ=-nψ(ρ)+k=1nжурнал(ykβk)

l(ρ,β)β=k=1nβk(βkyk-ρ),

где ψ(ρ) дигамма-функция.

nLogLGradFun = @(theta) deal(-sum(-gammaln(theta(1)) - ...
    theta(1)*log(theta(2) + x) + (theta(1)-1)*log(y) - ...
    y./(theta(2)+x)),...
    -[sum(-psi(theta(1))+log(y./(theta(2)+x)));...
    sum(1./(theta(2)+x).*(y./(theta(2)+x)-theta(1)))]);

nLogLGradFun анонимная функция, которая возвращает отрицательную логарифмическую правдоподобность и градиент, учитывая вход theta, который содержит параметры ρ и β, соответственно.

Численно оптимизируйте отрицательную функцию логарифмической правдоподобности использование fmincon, который минимизирует целевую функцию, удовлетворяющую ограничениям.

theta0 = randn(2,1); % Initial value for optimization
uLB = [0 -min(x)];   % Unrestricted model lower bound
uUB = [Inf Inf];     % Unrestricted model upper bound
options = optimoptions('fmincon','Algorithm','interior-point',...
    'FunctionTolerance',1e-10,'Display','off',...
    'SpecifyObjectiveGradient',true); % Optimization options

[uMLE,uLogL] = fmincon(nLogLGradFun,theta0,[],[],[],[],uLB,uUB,[],options);
uLogL = -uLogL;

uMLE неограниченная оценка наибольшего правдоподобия и uLogL максимум логарифмической правдоподобности.

Введите ограничение к логарифмической правдоподобности путем установки соответствующих ограничений нижней и верхней границы ρ к 1. Минимизируйте отрицательную, ограниченную логарифмическую правдоподобность.

dof = 1;           % Number of restrictions
rLB = [1 -min(x)]; % Restricted model lower bound
rUB = [1 Inf];     % Restricted model upper bound
[rMLE,rLogL] = fmincon(nLogLGradFun,theta0,[],[],[],[],rLB,rUB,[],options);
rLogL = -rLogL;

rMLE неограниченная оценка наибольшего правдоподобия и rLogL максимум логарифмической правдоподобности.

Используйте тест отношения правдоподобия, чтобы оценить, представляют ли данные достаточно свидетельств, чтобы способствовать неограниченной модели по ограниченной модели.

[h,pValue,stat] = lratiotest(uLogL,rLogL,dof)
h = logical
   1

pValue = 8.9146e-04
stat = 11.0404

pValue близко к 0, который указывает, что существуют убедительные доказательства, предполагающие, что неограниченная модель соответствует данным лучше, чем ограниченная модель.

Оцените спецификации модели путем тестирования вниз среди нескольких ограниченных моделей с помощью симулированных данных. Истинная модель является ARMA (2,1)

yt=3+0.9yt-1-0.5yt-2+εt+0.7εt-1,

где εt является Гауссовым со средним значением 0 и отклонением 1.

Задайте истинную модель ARMA(2,1) и симулируйте 100 значений ответа.

TrueMdl = arima('AR',{0.9,-0.5},'MA',0.7,...
    'Constant',3,'Variance',1);
T = 100;
rng(1); % For reproducibility
y = simulate(TrueMdl,T);

Задайте неограниченную модель и модели кандидата для тестирования вниз.

Mdl = {arima(2,0,2),arima(2,0,1),arima(2,0,0),arima(1,0,2),arima(1,0,1),...
    arima(1,0,0),arima(0,0,2),arima(0,0,1)};
rMdlNames = {'ARMA(2,1)','AR(2)','ARMA(1,2)','ARMA(1,1)',...
    'AR(1)','MA(2)','MA(1)'};

Mdl 1 7 массив ячеек. Mdl{1} неограниченная модель, и все другие ячейки содержат модель кандидата.

Подбирайте модели кандидата к симулированным данным.

logL = zeros(size(Mdl,1),1); % Preallocate loglikelihoods
dof = logL;                  % Preallocate degrees of freedom
for k = 1:size(Mdl,2)
    [EstMdl,~,logL(k)] = estimate(Mdl{k},y,'Display','off');
    dof(k) = 4 - (EstMdl.P + EstMdl.Q); % Number of restricted parameters
end
uLogL = logL(1);     
rLogL = logL(2:end); 
dof = dof(2:end);

uLogL и rLogL значения неограниченной логарифмической правдоподобности, оцененной в неограниченных и ограниченных оценках параметра модели, соответственно.

Примените тест отношения правдоподобия на 1%-м уровне значения, чтобы найти соответствующее, ограничил спецификацию (спецификации) модели.

alpha = .01;
h = lratiotest(uLogL,rLogL,dof,alpha);
RestrictedModels = rMdlNames(~h)
RestrictedModels = 1x4 cell array
    {'ARMA(2,1)'}    {'ARMA(1,2)'}    {'ARMA(1,1)'}    {'MA(2)'}

Самые соответствующие ограниченные модели являются ARMA (2,1), ARMA (1,2), ARMA (1,1), или MA (2).

Можно протестировать вниз снова, но использовать ARMA (2,1) в качестве неограниченной модели. В этом случае необходимо удалить MA (2) из возможных ограниченных моделей.

Протестируйте, существуют ли значительные эффекты ДУГИ в симулированном ряду ответа с помощью lratiotest. Значения параметров в этом примере произвольны.

Задайте модель AR (1) с ДУГОЙ (1) отклонение:

yt=0.9yt-1+εt,

где

  • εt=wtht.

  • ht=1+0.5εt-12.

  • wt является Гауссовым со средним значением 0 и отклонением 1.

VarMdl = garch('ARCH',0.5,'Constant',1);
Mdl = arima('Constant',0,'Variance',VarMdl,'AR',0.9);

Mdl полностью заданная модель AR (1) с ДУГОЙ (1) отклонение.

Симулируйте преддемонстрационные и эффективные демонстрационные ответы от Mdl.

T = 100;
rng(1);  % For reproducibility
n = 2;   % Number of presample observations required for the gradient
[y,epsilon,condVariance] = simulate(Mdl,T + n);

psI = 1:n;             % Presample indices
esI = (n + 1):(T + n); % Estimation sample indices

epsilon случайный путь инноваций от VarMdl. Программное обеспечение фильтрует epsilon через Mdl давать случайный путь к ответу y.

Задайте неограниченную модель, принимающую, что условная средняя константа модели 0:

yt=ϕ1yt-1+εt,

где ht=α0+α1εt-12. Соответствуйте симулированным данным (y) к неограниченной модели с помощью преддемонстрационных наблюдений.

UVarMdl = garch(0,1);
UMdl = arima('ARLags',1,'Constant',0,'Variance',UVarMdl);
[~,~,uLogL] = estimate(UMdl,y(esI),'Y0',y(psI),'E0',epsilon(psI),...
    'V0',condVariance(psI),'Display','off');

uLogL максимальное значение неограниченной функции логарифмической правдоподобности.

Задайте ограниченную модель, принимающую, что условная средняя константа модели 0:

yt=ϕ1yt-1+εt,

где ht=α0. Соответствуйте симулированным данным (y) к ограниченной модели с помощью преддемонстрационных наблюдений.

RVarMdl = garch(0,1);
RVarMdl.ARCH{1} = 0;
RMdl = arima('ARLags',1,'Constant',0,'Variance',RVarMdl);
[~,~,rLogL] = estimate(RMdl,y(esI),'Y0',y(psI),'E0',epsilon(psI),...
    'V0',condVariance(psI),'Display','off');

Структура RMdl совпадает с UMdl. Однако каждый параметр неизвестен, за исключением ограничения. Это ограничения равенства во время оценки. Можно интерпретировать RMdl как модель AR (1) с Гауссовыми инновациями, которые имеют среднее значение 0 и постоянное отклонение.

Протестируйте нулевую гипотезу это α1=0 на 5%-м уровне значения по умолчанию с помощью lratoitest.

dof = (UMdl.P + UMdl.Q + UVarMdl.P + UVarMdl.Q) ...
    - (RMdl.P + RMdl.Q + RVarMdl.P + RVarMdl.Q);
[h,pValue,stat,cValue] = lratiotest(uLogL,rLogL,dof)
h = logical
   1

pValue = 6.7505e-04
stat = 11.5567
cValue = 3.8415

h = 1 указывает, что пустая, ограниченная модель должна быть отклонена в пользу альтернативной, неограниченной модели. pValue близко к 0, предполагая, что существуют убедительные доказательства для отклонения. stat значение тестовой статистической величины хи-квадрата и cValue критическое значение для теста.

Входные параметры

свернуть все

Неограниченные максимумы логарифмической правдоподобности модели, заданные как скаляр или вектор. Если uLogL скаляр, затем программное обеспечение расширяет его до той же длины как rLogL.

Типы данных: double

Ограниченные максимумы логарифмической правдоподобности модели, заданные как скаляр или вектор. Если rLogL скаляр, затем программное обеспечение расширяет его до той же длины как uLogL. Элементы rLogL не должен превышать соответствующие элементы uLogL.

Типы данных: double

Степени свободы для асимптотического, распределения хи-квадрат тестовой статистики, заданной как положительное целое число или вектор положительных целых чисел.

Для каждого соответствующего теста, элементов dof:

  • Количество ограничений модели

  • Должен быть меньше количества параметров в неограниченной модели.

При проведении k> 1 тест,

  • Если dof скаляр, затем программное обеспечение расширяет его до k-by-1 вектор.

  • Если dof вектор, затем он должен иметь длину k.

Типы данных: double

Номинальные уровни значения для тестов гипотезы, заданных как скаляр или вектор.

Каждый элемент alpha должен быть больше 0 и меньше чем 1.

При проведении k> 1 тест,

  • Если alpha скаляр, затем программное обеспечение расширяет его до k-by-1 вектор.

  • Если alpha вектор, затем он должен иметь длину k.

Типы данных: double

Выходные аргументы

свернуть все

Протестируйте решения отклонения, возвращенные как логическое значение или вектор логических значений с длиной, равной количеству тестов, которые проводит программное обеспечение.

  • h = 1 указывает на отклонение пустой, ограниченной модели в пользу альтернативной, неограниченной модели.

  • h = 0 указывает на отказ отклонить пустую, ограниченную модель.

Протестируйте статистический p - значения, возвращенные как скаляр или вектор с длиной, равной количеству тестов, которые проводит программное обеспечение.

Протестируйте статистику, возвращенную как скаляр или вектор с длиной, равной количеству тестов, которые проводит программное обеспечение.

Критические значения определяются alpha, возвращенный, когда скаляр или вектор с длиной равняются количеству тестов, которые проводит программное обеспечение.

Больше о

свернуть все

Тест отношения правдоподобия

likelihood ratio test сравнивает спецификации вложенных моделей путем оценки значения ограничений на расширенную модель неограниченными параметрами.

Тест использует следующий алгоритм:

  1. Максимизируйте функцию логарифмической правдоподобности [l (θ)] под ограниченными и неограниченными предположениями модели. Обозначьте MLEs для ограниченных и неограниченных моделей θ^0 и θ^, соответственно.

  2. Выполните целевую функцию логарифмической правдоподобности при ограниченном и неограниченном MLEs, т.е. l^0=l(θ^0) и l^=l(θ^).

  3. Вычислите тестовую статистическую величину отношения правдоподобия, LR=2(l^l^0).

  4. Если LR превышает критическое значение () относительно его асимптотического распределения, то отклоните пустую, ограниченную модель в пользу альтернативной, неограниченной модели.

    • По нулевой гипотезе LR является χd 2 распределенных со степенями свободы d.

    • Степени свободы для теста (d) являются количеством ограниченных параметров.

    • Уровень значения теста (α) определяет критическое значение ().

Советы

  • Оцените неограниченные и ограниченные одномерные линейные модели временных рядов, такие как arima или garch, или модели регрессии временных рядов (regARIMA) использование estimate. Оцените неограниченные и ограниченные модели VAR (varm) использование estimate.

    estimate функции возвращают максимумы логарифмической правдоподобности, которые можно использовать в качестве входных параметров к lratiotest.

  • Если можно легко вычислить и ограниченные и неограниченные оценки параметра, то используйте lratiotest. Для сравнения:

    • waldtest только требует неограниченных оценок параметра.

    • lmtest требует ограниченных оценок параметра.

Алгоритмы

  • lratiotest выполняет несколько, независимые тесты, когда неограниченное или ограничило максимумы логарифмической правдоподобности модели (uLogL и rLogL, соответственно), вектор.

    • Если rLogL вектор и uLogL скаляр, затем lratiotest “тесты вниз” против нескольких ограниченных моделей.

    • Если uLogL вектор и rLogL скаляр, затем lratiotest “тесты” против нескольких неограниченных моделей.

    • В противном случае, lratiotest сравнивает спецификации модели попарно.

  • alpha номинально в этом, это задает вероятность отклонения в асимптотическом распределении. Фактическая вероятность отклонения обычно больше номинального значения.

Ссылки

[1] Дэвидсон, R. и Дж. Г. Маккиннон. Эконометрическая теория и методы. Оксфорд, Великобритания: Издательство Оксфордского университета, 2004.

[2] Годфри, тесты Л. Г. Мисспекификэйшна в эконометрике. Кембридж, Великобритания: Издательство Кембриджского университета, 1997.

[3] Грин, В. Х. Эконометрик Анэлизис. 6-й редактор Верхний Сэддл-Ривер, NJ: Пирсон Prentice Hall, 2008.

[4] Гамильтон, J. D. Анализ Временных Рядов. Принстон, NJ: Издательство Принстонского университета, 1994.

Представлено до R2006a

Для просмотра документации необходимо авторизоваться на сайте