derivative

Производная времени состояния транспортного средства

Описание

пример

stateDot = derivative(motionModel,state,cmds) возвращает производную текущего состояния, stateDot, как трехэлементный вектор [xDot yDot thetaDot], если моделью движения является bicycleKinematics, differentialDriveKinematics, или unicycleKinematics объект. Это возвращает state как четырехэлементный вектор, [xDot yDot thetaDot psiDot], если моделью движения является ackermannKinematics объект. xDot и yDot относятся к скорости транспортного средства, заданной в метрах в секунду. thetaDot является скоростью вращения заголовка транспортного средства, и psiDot является скоростью вращения регулирования транспортного средства, оба заданные в радианах в секунду.

Примеры

свернуть все

В этом примере показано, как смоделировать различные модели кинематики робота в среде и сравнить их.

Задайте мобильных роботов с кинематическими ограничениями

Существует много способов смоделировать кинематику мобильных роботов. Все диктуют, как скорости колеса связаны с состоянием робота: [x y theta], как координаты xy и заголовок робота, theta, в радианах.

Одноколесный велосипед кинематическая модель

Самый простой способ представлять мобильную кинематику транспортного средства робота с моделью одноколесного велосипеда, которой установило скорость колеса вращение вокруг центральной оси и может вертеться о ее оси z. И дифференциальный диск и велосипед, который кинематические модели уменьшают вниз до кинематики одноколесного велосипеда, когда входные параметры обеспечиваются как скорость транспортного средства и уровень заголовка транспортного средства и другие ограничения, не рассматриваются.

unicycle = unicycleKinematics("VehicleInputs","VehicleSpeedHeadingRate");

Дифференциальный диск кинематическая модель

Дифференциальная модель диска использует заднюю часть ведущая ось, чтобы контролировать и скорость транспортного средства и главный уровень. Колеса на ведущей оси могут вращаться в обоих направлениях. Поскольку большинство мобильных роботов имеет некоторый интерфейс к низкоуровневым командам колеса, эта модель будет снова использовать скорость транспортного средства и направляющийся уровень, как введено, чтобы упростить управление транспортным средством.

diffDrive = differentialDriveKinematics("VehicleInputs","VehicleSpeedHeadingRate");

Чтобы дифференцировать поведение от модели одноколесного велосипеда, добавьте скоростное ограничение скорости колеса в дифференциальный диск кинематическая модель

diffDrive.WheelSpeedRange = [-10 10]*2*pi;

Велосипед кинематическая модель

Модель велосипеда обрабатывает робота как подобную автомобилю модель с двумя осями: ведущая ось задней части и передняя ось, которая оборачивается ось z. Модель велосипеда работает под предположением, что колеса на каждой оси могут быть смоделированы как одно, колесо в центре, и что передний заголовок колеса может быть непосредственно установлен, как велосипед.

bicycle = bicycleKinematics("VehicleInputs","VehicleSpeedHeadingRate","MaxSteeringAngle",pi/8);

Другие модели

Акерманн кинематическая модель является модифицированной подобной автомобилю моделью, которая принимает Акерманна, держащегося. В большинстве подобных автомобилю транспортных средств передние колеса не оборачиваются ту же ось, но вместо этого включают немного отличающиеся оси, чтобы гарантировать, что они едут на концентрических кругах о центре очереди транспортного средства. Это различие в превращении угла называется Акерманном, держащимся, и обычно осуществляется механизмом в фактических транспортных средствах. От транспортного средства и точки зрения кинематики колеса, это может быть осуществлено путем обработки держащегося угла как входа уровня.

carLike = ackermannKinematics;

Настройте Параметры Симуляции

Эти мобильные роботы будут следовать за набором waypoints, который спроектирован, чтобы показать некоторые различия, вызванные отличающейся кинематикой.

waypoints = [0 0; 0 10; 10 10; 5 10; 11 9; 4 -5];
% Define the total time and the sample rate
sampleTime = 0.05;               % Sample time [s]
tVec = 0:sampleTime:20;          % Time array

initPose = [waypoints(1,:)'; 0]; % Initial pose (x y theta)

Создайте контроллер транспортного средства

Транспортные средства следуют за набором waypoints использование Чистого контроллера Преследования. Учитывая набор waypoints, текущего состояния робота и некоторых других параметров, контроллер выходная скорость транспортного средства и направляющийся уровень.

% Define a controller. Each robot requires its own controller
controller1 = controllerPurePursuit("Waypoints",waypoints,"DesiredLinearVelocity",3,"MaxAngularVelocity",3*pi);
controller2 = controllerPurePursuit("Waypoints",waypoints,"DesiredLinearVelocity",3,"MaxAngularVelocity",3*pi);
controller3 = controllerPurePursuit("Waypoints",waypoints,"DesiredLinearVelocity",3,"MaxAngularVelocity",3*pi);

Симулируйте модели Используя решатель ОДУ

Модели симулированы с помощью derivative функционируйте, чтобы обновить состояние. Этот пример использует решатель для обыкновенных дифференциальных уравнений (ОДУ), чтобы сгенерировать решение. Иначе должен был бы обновить состояние с помощью цикла, как показано в Следовании траектории для Робота с дифференциальным приводом.

Поскольку решатель ОДУ требует, чтобы все выходные параметры были обеспечены как один выход, чистый контроллер преследования должен быть перенесен в функцию, которая выводит линейную скорость и направляющуюся скорость вращения как один выход. Помощник в качестве примера, exampleHelperMobileRobotController, используется с этой целью. Помощник в качестве примера также гарантирует, что робот останавливается, когда это в заданном радиусе цели.

goalPoints = waypoints(end,:)';
goalRadius = 1;

ode45 называется однажды для каждого типа модели. Производная функция вычисляет выходные параметры состояния с начальным состоянием, установленным initPose. Каждая производная принимает соответствующий кинематический объект модели, текущее положение робота и выход контроллера в том положении.

% Compute trajectories for each kinematic model under motion control
[tUnicycle,unicyclePose] = ode45(@(t,y)derivative(unicycle,y,exampleHelperMobileRobotController(controller1,y,goalPoints,goalRadius)),tVec,initPose);
[tBicycle,bicyclePose] = ode45(@(t,y)derivative(bicycle,y,exampleHelperMobileRobotController(controller2,y,goalPoints,goalRadius)),tVec,initPose);
[tDiffDrive,diffDrivePose] = ode45(@(t,y)derivative(diffDrive,y,exampleHelperMobileRobotController(controller3,y,goalPoints,goalRadius)),tVec,initPose);

Постройте результаты

Результаты решателя ОДУ могут быть легко просмотрены на одном графике с помощью plotTransforms визуализировать результаты всех траекторий целиком.

Положение выходные параметры должно сначала быть преобразовано в индексируемые матрицы переводов и кватернионов.

unicycleTranslations = [unicyclePose(:,1:2) zeros(length(unicyclePose),1)];
unicycleRot = axang2quat([repmat([0 0 1],length(unicyclePose),1) unicyclePose(:,3)]);

bicycleTranslations = [bicyclePose(:,1:2) zeros(length(bicyclePose),1)];
bicycleRot = axang2quat([repmat([0 0 1],length(bicyclePose),1) bicyclePose(:,3)]);

diffDriveTranslations = [diffDrivePose(:,1:2) zeros(length(diffDrivePose),1)];
diffDriveRot = axang2quat([repmat([0 0 1],length(diffDrivePose),1) diffDrivePose(:,3)]);

Затем набор всех преобразований может быть построен и просмотрен от верхней части. Пути одноколесного велосипеда, велосипеда и роботов с дифференциальным приводом являются красными, синими, и зелеными, соответственно. Чтобы упростить график, только покажите каждый десятый выход.

figure
plot(waypoints(:,1),waypoints(:,2),"kx-","MarkerSize",20);
hold all
plotTransforms(unicycleTranslations(1:10:end,:),unicycleRot(1:10:end,:),'MeshFilePath','groundvehicle.stl',"MeshColor","r");
plotTransforms(bicycleTranslations(1:10:end,:),bicycleRot(1:10:end,:),'MeshFilePath','groundvehicle.stl',"MeshColor","b");
plotTransforms(diffDriveTranslations(1:10:end,:),diffDriveRot(1:10:end,:),'MeshFilePath','groundvehicle.stl',"MeshColor","g");
view(0,90)

Входные параметры

свернуть все

Мобильный объект модели кинематики, который задает свойства модели движения. Это может быть ackermannKinematics, bicycleKinematics, differentialDriveKinematics, или unicycleKinematics объект.

Текущее состояние транспортного средства, которое может быть или трехэлементным вектором или четырехэлементным вектором. state трехэлементный вектор, заданный как [x y theta] если motionModel аргументом является bicycleKinematics, differentialDriveKinematics, или unicycleKinematics объект. Это возвращает stateDot как четырехэлементный вектор, [x y theta psi], если motionModel аргументом является ackermannKinematics объект. x и y относятся к xy, позиционному из транспортного средства, заданного в метрах. theta является углом заголовка транспортного средства, и psi является углом регулирования транспортного средства, оба заданные в радианах.

Двухэлементный вектор входных команд, заданных как [v psiDot], где v является скоростью транспортного средства в метрах в секунду и psiDot, является держащейся скоростью вращения в радианах в секунду.

Выходные аргументы

свернуть все

Производная текущего состояния возвратилась как трехэлементный вектор [xDot yDot thetaDot], если моделью движения является bicycleKinematics, differentialDriveKinematics, или unicycleKinematics объект. Это возвращено как четырехэлементный вектор, [xDot yDot thetaDot psiDot], если моделью движения является ackermannKinematics объект. xDot и yDot относятся к скорости транспортного средства, заданной в метрах в секунду. thetaDot является скоростью вращения заголовка транспортного средства, и psiDot является скоростью вращения регулирования транспортного средства, оба заданные в радианах в секунду.

Ссылки

[1] Линчуйте, Кевин М. и Франк К. Парк. Современная Робототехника: Механика, Планирование и Управление. 1-й редактор Кембридж, MA: Издательство Кембриджского университета, 2017.

Введенный в R2019b

Для просмотра документации необходимо авторизоваться на сайте