egarch

Условная модель временных рядов отклонения EGARCH

Описание

Использование egarch задавать одномерный EGARCH (экспоненциал обобщил авторегрессивное условное выражение heteroscedastic), модель. egarch функция возвращается egarch объект, задающий функциональную форму EGARCH (P, Q) модель и хранилища ее значения параметров.

Ключевые компоненты egarch модель включает:

  • Полином GARCH, который состоит из изолированных, регистрировал условные отклонения. Степень обозначается P.

  • Полином ДУГИ, который состоит из величин изолированных стандартизированных инноваций.

  • Усильте полином, который состоит из изолированных стандартизированных инноваций.

  • Максимум ДУГИ и степеней полинома рычагов, обозначенных Q.

P является максимальной ненулевой задержкой в полиноме GARCH, и Q является максимальной ненулевой задержкой в полиномах рычагов и ДУГЕ. Другие компоненты модели включают инновационное среднее смещение модели, условная постоянная модель отклонения, и инновационное распределение.

Все коэффициенты неизвестны (NaN значения) и допускающий оценку, если вы не задаете их синтаксис аргумента пары "имя-значение" использования значений. Чтобы оценить модели, содержащие все или частично неизвестные определенные данные значений параметров, использовать estimate. Для абсолютно заданных моделей (модели, в которых известны все значения параметров), симулируйте или предскажите использование ответов simulate или forecast, соответственно.

Создание

Описание

пример

Mdl = egarch создает условное отклонение нулевой степени egarch объект.

пример

Mdl = egarch(P,Q) создает условный объект модели отклонения EGARCH (Mdl) полиномом GARCH со степенью P, и ДУГА и полиномы рычагов каждый со степенью Q. Все полиномы содержат все последовательные задержки от 1 до их степеней, и всеми коэффициентами является NaN значения.

Этот краткий синтаксис позволяет вам создать шаблон, в области которого вы задаете полиномиальные степени явным образом. Шаблон модели подходит для неограниченной оценки параметра, то есть, оценки без любых ограничений равенства параметра. Однако после того, как вы создаете модель, можно изменить значения свойств с помощью записи через точку.

пример

Mdl = egarch(Name,Value) свойства наборов или аргументы пары "имя-значение" использования дополнительных опций. Заключите каждое имя в кавычки. Например, 'ARCHLags',[1 4],'ARCH',{0.2 0.3} задает два коэффициента ДУГИ в ARCH в задержках 1 и 4.

Этот рукописный синтаксис позволяет вам создать более гибкие модели.

Входные параметры

развернуть все

Краткий синтаксис обеспечивает простой способ к вам создать шаблоны модели, которые подходят для неограниченной оценки параметра. Например, чтобы создать модель EGARCH(1,2), содержащую неизвестные значения параметров, введите:

Mdl = egarch(1,2);
Чтобы наложить ограничения равенства на значения параметров во время оценки, установите соответствующие значения свойств с помощью записи через точку.

Степень полинома GARCH в виде неотрицательного целого числа. В полиноме GARCH и во время t, MATLAB® включает все последовательные регистрируемые условные условия отклонения от задержки t – 1 через задержку tP.

Можно задать этот аргумент с помощью egarch(P,Q) краткий синтаксис только.

Если P > 0, затем необходимо задать Q как положительное целое число.

Пример: egarch(1,1)

Типы данных: double

Степень полинома ДУГИ в виде неотрицательного целого числа. В полиноме ДУГИ и во время t, MATLAB включает все последовательные величины стандартизированных инновационных условий (для полинома ДУГИ) и всех стандартизированных инновационных условий (для полинома рычагов) от задержки t – 1 через задержку tQ.

Можно задать этот аргумент с помощью egarch(P,Q) краткий синтаксис только.

Если P > 0, затем необходимо задать Q как положительное целое число.

Пример: egarch(1,1)

Типы данных: double

Аргументы в виде пар имя-значение

Задайте дополнительные разделенные запятой пары Name,Value аргументы. Name имя аргумента и Value соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.

Рукописный синтаксис позволяет вам создать модели, в которых некоторые или все коэффициенты известны. Во время оценки, estimate налагает ограничения равенства на любые известные параметры.

Пример: 'ARCHLags',[1 4],'ARCH',{NaN NaN} задает модель EGARCH(0,4) и неизвестные, но ненулевые, содействующие матрицы ДУГИ в задержках 1 и 4.

Полином GARCH отстает в виде разделенной запятой пары, состоящей из 'GARCHLags' и числовой вектор из уникальных положительных целых чисел.

GARCHLags (j) задержка, соответствующая коэффициенту GARCH {j}. Длины GARCHLags и GARCH должно быть равным.

Принятие всех коэффициентов GARCH (заданный GARCH свойство), положительны или NaN значения, max(GARCHLags) определяет значение P свойство.

Пример: 'GARCHLags',[1 4]

Типы данных: double

Полином ДУГИ отстает в виде разделенной запятой пары, состоящей из 'ARCHLags' и числовой вектор из уникальных положительных целых чисел.

ARCHLags (j) задержка, соответствующая содействующей ДУГЕ {j}. Длины ARCHLags и ARCH должно быть равным.

Принятие всей ДУГИ и коэффициентов рычагов (заданный ARCH и Leverage свойства), положительны или NaN значения, max([ARCHLags LeverageLags]) определяет значение Q свойство.

Пример: 'ARCHLags',[1 4]

Типы данных: double

Усильте полиномиальные задержки в виде разделенной запятой пары, состоящей из 'LeverageLags' и числовой вектор из уникальных положительных целых чисел.

LeverageLags (j) задержка, соответствующая содействующим Рычагам {j}. Длины LeverageLags и Leverage должно быть равным.

Принятие всей ДУГИ и коэффициентов рычагов (заданный ARCH и Leverage свойства), положительны или NaN значения, max([ARCHLags LeverageLags]) определяет значение Q свойство.

Пример: 'LeverageLags',1:4

Типы данных: double

Свойства

развернуть все

Можно установить перезаписываемые значения свойств, когда вы создаете объект модели при помощи синтаксиса аргумента пары "имя-значение", или после того, как вы создаете объект модели при помощи записи через точку. Например, чтобы создать модель EGARCH(1,1) с неизвестными коэффициентами, и затем задать инновационное распределение t с неизвестными степенями свободы, введите:

Mdl = egarch('GARCHLags',1,'ARCHLags',1);
Mdl.Distribution = "t";

Это свойство доступно только для чтения.

Степень полинома GARCH в виде неотрицательного целого числа. P максимальная задержка в полиноме GARCH с коэффициентом, который положителен или NaN. Задержки, которые меньше P может иметь коэффициенты, равные 0.

P задает минимальное количество преддемонстрационных условных отклонений, требуемых инициализировать модель.

Если вы используете аргументы пары "имя-значение", чтобы создать модель, то MATLAB реализует одну из этих альтернатив (принимающий, что коэффициент самой большой задержки положителен или NaN):

  • Если вы задаете GARCHLags, затем P самая большая заданная задержка.

  • Если вы задаете GARCH, затем P число элементов заданного значения. Если вы также задаете GARCHLags, затем egarch использование GARCHLags определить P вместо этого.

  • В противном случае, P 0.

Типы данных: double

Это свойство доступно только для чтения.

Максимальная степень ДУГИ и полиномов рычагов в виде неотрицательного целого числа. Q максимальная задержка в ДУГЕ и полиномы рычагов в модели. В любом типе полинома, задержки, которые меньше Q может иметь коэффициенты, равные 0.

Q задает минимальное количество преддемонстрационных инноваций, требуемых инициировать модель.

Если вы используете аргументы пары "имя-значение", чтобы создать модель, то MATLAB реализует одну из этих альтернатив (принимающий коэффициенты самых больших задержек в ДУГЕ, и полиномы рычагов положительны или NaN):

  • Если вы задаете ARCHLags или LeverageLags, затем Q максимум между этими двумя техническими требованиями.

  • Если вы задаете ARCH или Leverage, затем Q максимальное количество элементов между этими двумя техническими требованиями. Если вы также задаете ARCHLags или LeverageLags, затем egarch использует их значения, чтобы определить Q вместо этого.

  • В противном случае, Q 0.

Типы данных: double

Условная модель отклонения, постоянная в виде числового скаляра или NaN значение.

Типы данных: double

Коэффициенты полинома GARCH в виде вектора ячейки из положительных скалярных величин или NaN значения.

  • Если вы задаете GARCHLags, затем следующие условия применяются.

    • Длины GARCH и GARCHLags равны.

    • GARCH {j} коэффициент задержки GARCHLags (j).

    • По умолчанию, GARCH numel(GARCHLags)- 1 вектор ячейки из NaN значения.

  • В противном случае следующие условия применяются.

    • Длина GARCH P.

    • GARCH {j} коэффициент задержки j.

    • По умолчанию, GARCH P- 1 вектор ячейки из NaN значения.

Коэффициенты в GARCH соответствуйте коэффициентам в базовом LagOp изолируйте полином оператора, и подвергаются тесту исключения почти неприятия. Если вы устанавливаете коэффициент на 1e–12 или ниже, egarch исключает тот коэффициент и его соответствующую задержку в GARCHLags из модели.

Типы данных: cell

Коэффициенты полинома ДУГИ в виде вектора ячейки из положительных скалярных величин или NaN значения.

  • Если вы задаете ARCHLags, затем следующие условия применяются.

    • Длины ARCH и ARCHLags равны.

    • ДУГА {j} коэффициент задержки ARCHLags (j).

    • По умолчанию, ARCH Q- 1 вектор ячейки из NaN значения. Для получения дополнительной информации смотрите Q свойство.

  • В противном случае следующие условия применяются.

    • Длина ARCH Q.

    • ДУГА {j} коэффициент задержки j.

    • По умолчанию, ARCH Q- 1 вектор ячейки из NaN значения.

Коэффициенты в ARCH соответствуйте коэффициентам в базовом LagOp изолируйте полином оператора, и подвергаются тесту исключения почти неприятия. Если вы устанавливаете коэффициент на 1e–12 или ниже, egarch исключает тот коэффициент и его соответствующую задержку в ARCHLags из модели.

Типы данных: cell

Усильте полиномиальные коэффициенты в виде вектора ячейки из числовых скаляров или NaN значения.

  • Если вы задаете LeverageLags, затем следующие условия применяются.

    • Длины Leverage и LeverageLags равны.

    • Рычаги {j} коэффициент задержки LeverageLags (j).

    • По умолчанию, Leverage Q- 1 вектор ячейки из NaN значения. Для получения дополнительной информации смотрите Q свойство.

  • В противном случае следующие условия применяются.

    • Длина Leverage Q.

    • Рычаги {j} коэффициент задержки j.

    • По умолчанию, Leverage Q- 1 вектор ячейки из NaN значения.

Коэффициенты в Leverage соответствуйте коэффициентам в базовом LagOp изолируйте полином оператора, и подвергаются тесту исключения почти неприятия. Если вы устанавливаете коэффициент на 1e–12 или ниже, egarch исключает тот коэффициент и его соответствующую задержку в LeverageLags из модели.

Типы данных: cell

Это свойство доступно только для чтения.

Безусловное отклонение модели в виде положительной скалярной величины.

Безусловное отклонение

σε2=exp{κ(1i=1Pγi)}.

κ является условной постоянной моделью отклонения (Constant).

Типы данных: double

Инновационное среднее смещение модели или аддитивная постоянная в виде числового скаляра или NaN значение.

Типы данных: double

Распределение условной вероятности инновационного процесса в виде строки или массива структур. egarch хранит значение как массив структур.

РаспределениеСтрокаМассив структур
Гауссов"Gaussian"struct('Name',"Gaussian")
t студента"t"struct('Name',"t",'DoF',DoF)

'DoF' поле задает параметр степеней свободы распределения t.

  • DoF > 2 или DoF = NaN.

  • DoF является допускающим оценку.

  • Если вы задаете "t", DoF isnan по умолчанию. Можно изменить его значение при помощи записи через точку после того, как вы создадите модель. Например, Mdl.Distribution.DoF = 3.

  • Если вы предоставляете массив структур, чтобы задать распределение t Студента, то необходимо задать обоих 'Name' и 'DoF' поля .

Пример: struct('Name',"t",'DoF',10)

Описание модели в виде строкового скаляра или вектора символов. egarch хранит значение как строковый скаляр. Значение по умолчанию описывает параметрическую форму модели, например , "EGARCH(1,1) Conditional Variance Model (Gaussian Distribution)".

Типы данных: string | char

Примечание

  • Весь NaN- ценные параметры модели, которые включают коэффициенты и t - степени свободы инновационного распределения (если есть), являются допускающими оценку. Когда вы передаете получившийся egarch объект и данные к estimate, MATLAB оценивает весь NaN- ценные параметры. Во время оценки, estimate обработки известные параметры как ограничения равенства, то есть,estimate содержит любые известные параметры, зафиксированные в их значениях.

  • Как правило, задержки в ДУГЕ и полиномах рычагов являются тем же самым, но их равенство не является требованием. Отличающиеся полиномы происходят когда:

    • Любой ARCH{Q} или Leverage{Q} соответствует почти нулевому допуску исключения. В этом случае MATLAB исключает соответствующую задержку из полинома.

    • Вы задаете полиномы отличающихся длин путем определения ARCHLags или LeverageLags, или путем установки ARCH или Leverage свойство.

    В любом случае, Q максимальная задержка между этими двумя полиномами.

Функции объекта

estimateПодбирайте условную модель отклонения к данным
filterПропустите воздействия через условную модель отклонения
forecastПредскажите условные отклонения из условных моделей отклонения
inferВыведите условные отклонения условных моделей отклонения
simulateСимуляция Монте-Карло условных моделей отклонения
summarizeОтобразите результаты оценки условной модели отклонения

Примеры

свернуть все

Создайте egarch по умолчанию объект модели и задает свои значения параметров с помощью записи через точку.

Создайте модель EGARCH(0,0).

Mdl = egarch
Mdl = 
  egarch with properties:

     Description: "EGARCH(0,0) Conditional Variance Model (Gaussian Distribution)"
    Distribution: Name = "Gaussian"
               P: 0
               Q: 0
        Constant: NaN
           GARCH: {}
            ARCH: {}
        Leverage: {}
          Offset: 0

Mdl egarch модель. Это содержит неизвестную константу, ее смещением является 0, и инновационным распределением является 'Gaussian'. Модель не имеет GARCH, ДУГИ, или усиливает полиномы.

Задайте две неизвестных ДУГИ и усильте коэффициенты для задержек одна и две записи через точку использования.

Mdl.ARCH = {NaN NaN};
Mdl.Leverage = {NaN NaN};
Mdl
Mdl = 
  egarch with properties:

     Description: "EGARCH(0,2) Conditional Variance Model (Gaussian Distribution)"
    Distribution: Name = "Gaussian"
               P: 0
               Q: 2
        Constant: NaN
           GARCH: {}
            ARCH: {NaN NaN} at lags [1 2]
        Leverage: {NaN NaN} at lags [1 2]
          Offset: 0

Q, ARCH, и Leverage свойства обновляются к 2, {NaN NaN}, {NaN NaN}, соответственно. Две ДУГИ и коэффициенты рычагов сопоставлены с задержками 1 и 2.

Создайте egarch объект модели с помощью краткого обозначения egarch(P,Q), где P степень полинома GARCH и Q степень полинома рычагов и ДУГИ.

Создайте модель EGARCH(3,2).

Mdl = egarch(3,2)
Mdl = 
  egarch with properties:

     Description: "EGARCH(3,2) Conditional Variance Model (Gaussian Distribution)"
    Distribution: Name = "Gaussian"
               P: 3
               Q: 2
        Constant: NaN
           GARCH: {NaN NaN NaN} at lags [1 2 3]
            ARCH: {NaN NaN} at lags [1 2]
        Leverage: {NaN NaN} at lags [1 2]
          Offset: 0

Mdl egarch объект модели. Все свойства Mdl, кроме PQ, и Distribution, NaN значения. По умолчанию, программное обеспечение:

  • Включает условную постоянную модель отклонения

  • Исключает условное среднее смещение модели (т.е. смещением является 0)

  • Включает все условия задержки в полином GARCH, чтобы изолировать P

  • Включает все условия задержки в ДУГУ и полиномы рычагов, чтобы изолировать Q

Mdl задает только функциональную форму модели EGARCH. Поскольку это содержит неизвестные значения параметров, можно передать Mdl и данные timeseries к estimate оценить параметры.

Создайте egarch аргументы пары "имя-значение" использования объекта модели.

Задайте модель EGARCH(1,1). По умолчанию условное среднее смещение модели является нулем. Укажите, что смещением является NaN. Включайте термин рычагов.

Mdl = egarch('GARCHLags',1,'ARCHLags',1,'LeverageLags',1,'Offset',NaN)
Mdl = 
  egarch with properties:

     Description: "EGARCH(1,1) Conditional Variance Model with Offset (Gaussian Distribution)"
    Distribution: Name = "Gaussian"
               P: 1
               Q: 1
        Constant: NaN
           GARCH: {NaN} at lag [1]
            ARCH: {NaN} at lag [1]
        Leverage: {NaN} at lag [1]
          Offset: NaN

Mdl egarch объект модели. Программное обеспечение устанавливает все параметры на NaN, кроме PQ, и Distribution.

Начиная с Mdl содержит NaN значения, Mdl подходит для оценки только. Передайте Mdl и данные timeseries к estimate.

Создайте модель EGARCH(1,1) со средним смещением,

yt=0.5+εt,

где εt=σtzt,

σt2=0.0001+0.75logσt-12+0.1(|εt-1|σt-1-2π)-0.3εt-1σt-1+0.01εt-3σt-3,

и zt независимый политик и тождественно распределил стандартный Гауссов процесс.

Mdl = egarch('Constant',0.0001,'GARCH',0.75,...
    'ARCH',0.1,'Offset',0.5,'Leverage',{-0.3 0 0.01})
Mdl = 
  egarch with properties:

     Description: "EGARCH(1,3) Conditional Variance Model with Offset (Gaussian Distribution)"
    Distribution: Name = "Gaussian"
               P: 1
               Q: 3
        Constant: 0.0001
           GARCH: {0.75} at lag [1]
            ARCH: {0.1} at lag [1]
        Leverage: {-0.3 0.01} at lags [1 3]
          Offset: 0.5

egarch значения по умолчанию присвоений к любым свойствам вы не задаете с аргументами пары "имя-значение". Альтернативным способом задать компонент рычагов является 'Leverage',{-0.3 0.01},'LeverageLags',[1 3].

Доступ к свойствам созданного egarch объект модели с помощью записи через точку.

Создайте egarch объект модели.

Mdl = egarch(3,2)
Mdl = 
  egarch with properties:

     Description: "EGARCH(3,2) Conditional Variance Model (Gaussian Distribution)"
    Distribution: Name = "Gaussian"
               P: 3
               Q: 2
        Constant: NaN
           GARCH: {NaN NaN NaN} at lags [1 2 3]
            ARCH: {NaN NaN} at lags [1 2]
        Leverage: {NaN NaN} at lags [1 2]
          Offset: 0

Удалите второй срок GARCH из модели. Таким образом, укажите, что коэффициентом GARCH второго изолированного условного отклонения является 0.

Mdl.GARCH{2} = 0
Mdl = 
  egarch with properties:

     Description: "EGARCH(3,2) Conditional Variance Model (Gaussian Distribution)"
    Distribution: Name = "Gaussian"
               P: 3
               Q: 2
        Constant: NaN
           GARCH: {NaN NaN} at lags [1 3]
            ARCH: {NaN NaN} at lags [1 2]
        Leverage: {NaN NaN} at lags [1 2]
          Offset: 0

Полином GARCH имеет два неизвестных параметра, соответствующие задержкам 1 и 3.

Отобразите распределение воздействий.

Mdl.Distribution
ans = struct with fields:
    Name: "Gaussian"

Воздействия являются Гауссовыми со средним значением 0 и отклонением 1.

Укажите, что базовые воздействия имеют t распределение с пятью степенями свободы.

Mdl.Distribution = struct('Name','t','DoF',5)
Mdl = 
  egarch with properties:

     Description: "EGARCH(3,2) Conditional Variance Model (t Distribution)"
    Distribution: Name = "t", DoF = 5
               P: 3
               Q: 2
        Constant: NaN
           GARCH: {NaN NaN} at lags [1 3]
            ARCH: {NaN NaN} at lags [1 2]
        Leverage: {NaN NaN} at lags [1 2]
          Offset: 0

Укажите, что коэффициенты ДУГИ 0.2 для первой задержки и 0.1 для второй задержки.

Mdl.ARCH = {0.2 0.1}
Mdl = 
  egarch with properties:

     Description: "EGARCH(3,2) Conditional Variance Model (t Distribution)"
    Distribution: Name = "t", DoF = 5
               P: 3
               Q: 2
        Constant: NaN
           GARCH: {NaN NaN} at lags [1 3]
            ARCH: {0.2 0.1} at lags [1 2]
        Leverage: {NaN NaN} at lags [1 2]
          Offset: 0

Чтобы оценить остающиеся параметры, можно передать Mdl и ваши данные, чтобы оценить и использовать заданные параметры в качестве ограничений равенства. Или, можно задать остальную часть значений параметров, и затем симулировать или предсказать условные отклонения из модели GARCH путем передачи полностью заданной модели simulate или forecast, соответственно.

Подбирайте модель EGARCH к ежегодным временным рядам датской номинальной биржи, возвращается от 1922-1999.

Загрузите Data_Danish набор данных. График номинал возвращается (RN).

load Data_Danish;
nr = DataTable.RN;

figure;
plot(dates,nr);
hold on;
plot([dates(1) dates(end)],[0 0],'r:'); % Plot y = 0
hold off;
title('Danish Nominal Stock Returns');
ylabel('Nominal return (%)');
xlabel('Year');

Figure contains an axes. The axes with title Danish Nominal Stock Returns contains 2 objects of type line.

Номинальный ряд возврата, кажется, имеет ненулевое условное среднее смещение и, кажется, показывает кластеризацию энергозависимости. Таким образом, изменчивость меньше в течение более ранних лет, чем это в течение более поздних лет. В данном примере примите, что модель EGARCH(1,1) подходит для этого ряда.

Создайте модель EGARCH(1,1). Условное среднее смещение является нулем по умолчанию. Чтобы оценить смещение, укажите, что это - NaN. Включайте задержку рычагов.

Mdl = egarch('GARCHLags',1,'ARCHLags',1,'LeverageLags',1,'Offset',NaN);

Подбирайте модель EGARCH(1,1) к данным.

EstMdl = estimate(Mdl,nr);
 
    EGARCH(1,1) Conditional Variance Model with Offset (Gaussian Distribution):
 
                     Value       StandardError    TStatistic     PValue  
                   __________    _____________    __________    _________

    Constant         -0.62723       0.74401        -0.84304       0.39921
    GARCH{1}          0.77419       0.23628          3.2766     0.0010507
    ARCH{1}           0.38636       0.37361          1.0341       0.30107
    Leverage{1}    -0.0024989       0.19222          -0.013       0.98963
    Offset            0.10325      0.037727          2.7368     0.0062047

EstMdl полностью заданный egarch объект модели. Таким образом, это не содержит NaN значения. Можно оценить соответствие модели путем генерации остаточных значений с помощью infer, и затем анализ их.

Чтобы симулировать условные отклонения или ответы, передайте EstMdl к simulate.

Чтобы предсказать инновации, передайте EstMdl к forecast.

Симулируйте условное отклонение или пути к ответу от полностью заданного egarch объект модели. Таким образом, симулируйте от предполагаемого egarch модель или известный egarch модель, в которой вы задаете все значения параметров.

Загрузите Data_Danish набор данных.

load Data_Danish;
rn = DataTable.RN;

Создайте модель EGARCH(1,1) с неизвестным условным средним смещением. Подбирайте модель к ежегодному, номинальному ряду возврата. Включайте термин рычагов.

Mdl = egarch('GARCHLags',1,'ARCHLags',1,'LeverageLags',1,'Offset',NaN);
EstMdl = estimate(Mdl,rn);
 
    EGARCH(1,1) Conditional Variance Model with Offset (Gaussian Distribution):
 
                     Value       StandardError    TStatistic     PValue  
                   __________    _____________    __________    _________

    Constant         -0.62723       0.74401        -0.84304       0.39921
    GARCH{1}          0.77419       0.23628          3.2766     0.0010507
    ARCH{1}           0.38636       0.37361          1.0341       0.30107
    Leverage{1}    -0.0024989       0.19222          -0.013       0.98963
    Offset            0.10325      0.037727          2.7368     0.0062047

Симулируйте 100 путей условных отклонений и ответов из предполагаемой модели EGARCH.

numObs = numel(rn); % Sample size (T)
numPaths = 100;     % Number of paths to simulate
rng(1);             % For reproducibility
[VSim,YSim] = simulate(EstMdl,numObs,'NumPaths',numPaths);

VSim и YSim T- numPaths матрицы. Строки соответствуют периоду расчета, и столбцы соответствуют симулированному пути.

Постройте среднее значение и процентили на 2,5% и на 97,5% симулировать путей. Сравните статистику симуляции с исходными данными.

VSimBar = mean(VSim,2);
VSimCI = quantile(VSim,[0.025 0.975],2);
YSimBar = mean(YSim,2);
YSimCI = quantile(YSim,[0.025 0.975],2);

figure;
subplot(2,1,1);
h1 = plot(dates,VSim,'Color',0.8*ones(1,3));
hold on;
h2 = plot(dates,VSimBar,'k--','LineWidth',2);
h3 = plot(dates,VSimCI,'r--','LineWidth',2);
hold off;
title('Simulated Conditional Variances');
ylabel('Cond. var.');
xlabel('Year');

subplot(2,1,2);
h1 = plot(dates,YSim,'Color',0.8*ones(1,3));
hold on;
h2 = plot(dates,YSimBar,'k--','LineWidth',2);
h3 = plot(dates,YSimCI,'r--','LineWidth',2);
hold off;
title('Simulated Nominal Returns');
ylabel('Nominal return (%)');
xlabel('Year');
legend([h1(1) h2 h3(1)],{'Simulated path' 'Mean' 'Confidence bounds'},...
    'FontSize',7,'Location','NorthWest');

Figure contains 2 axes. Axes 1 with title Simulated Conditional Variances contains 103 objects of type line. Axes 2 with title Simulated Nominal Returns contains 103 objects of type line. These objects represent Simulated path, Mean, Confidence bounds.

Предскажите условные отклонения от полностью заданного egarch объект модели. Таким образом, предсказанный от предполагаемого egarch модель или известный egarch модель, в которой вы задаете все значения параметров. Пример следует из Оценки Модель EGARCH.

Загрузите Data_Danish набор данных.

load Data_Danish;
nr = DataTable.RN;

Создайте модель EGARCH(1,1) с неизвестным условным средним смещением и включайте термин рычагов. Подбирайте модель к ежегодному номинальному ряду возврата.

Mdl = egarch('GARCHLags',1,'ARCHLags',1,'LeverageLags',1,'Offset',NaN);
EstMdl = estimate(Mdl,nr);
 
    EGARCH(1,1) Conditional Variance Model with Offset (Gaussian Distribution):
 
                     Value       StandardError    TStatistic     PValue  
                   __________    _____________    __________    _________

    Constant         -0.62723       0.74401        -0.84304       0.39921
    GARCH{1}          0.77419       0.23628          3.2766     0.0010507
    ARCH{1}           0.38636       0.37361          1.0341       0.30107
    Leverage{1}    -0.0024989       0.19222          -0.013       0.98963
    Offset            0.10325      0.037727          2.7368     0.0062047

Предскажите условное отклонение номинальных лет серии 10 возврата в будущее с помощью предполагаемой модели EGARCH. Задайте целый ряд возвратов как преддемонстрационные наблюдения. Программное обеспечение выводит преддемонстрационные условные отклонения с помощью преддемонстрационных наблюдений и модели.

numPeriods = 10;
vF = forecast(EstMdl,numPeriods,nr);

График предсказанные условные отклонения номинала возвращается. Сравните прогнозы с наблюдаемыми условными отклонениями.

v = infer(EstMdl,nr);

figure;
plot(dates,v,'k:','LineWidth',2);
hold on;
plot(dates(end):dates(end) + 10,[v(end);vF],'r','LineWidth',2);
title('Forecasted Conditional Variances of Nominal Returns');
ylabel('Conditional variances');
xlabel('Year');
legend({'Estimation sample cond. var.','Forecasted cond. var.'},...
    'Location','Best');

Figure contains an axes. The axes with title Forecasted Conditional Variances of Nominal Returns contains 2 objects of type line. These objects represent Estimation sample cond. var., Forecasted cond. var..

Больше о

развернуть все

Советы

  • Можно задать egarch модель как часть состава условного среднего значения и моделей отклонения. Для получения дополнительной информации смотрите arima.

  • EGARCH (1,1) спецификация является достаточно комплексным для большинства приложений. Обычно в этих моделях, GARCH и коэффициенты ДУГИ положительны, и коэффициенты рычагов отрицательны. Если вы получаете эти знаки, то большие непредвиденные нисходящие шоки увеличивают отклонение. Если вы получаете знаки напротив тех знаков, которые ожидаются, можно столкнуться с трудностями, выводящими последовательности энергозависимости и прогнозирование. Отрицательный коэффициент ДУГИ проблематичен. В этом случае модель EGARCH не может быть лучшим выбором для вашего приложения.

Ссылки

[1] Tsay, R. S. Анализ Финансовых Временных рядов. 3-й редактор Хобокен, NJ: John Wiley & Sons, Inc., 2010.

Представленный в R2012a
Для просмотра документации необходимо авторизоваться на сайте