SM ST2C

Синхронная машина в дискретном или непрерывном времени ST2C статической системой возбуждения с автоматическим регулятором напряжения

  • Библиотека:
  • Simscape/Электрический/Управление/SM Управление

  • SM ST2C block

Описание

Блок SM ST2C реализует системную модель статического возбуждения ST2C типа синхронной машины в соответствии с IEEE 421.5-2016[1].

Используйте этот блок для моделирования управления и регулирования напряжения возбуждения синхронной машины.

Можно переключаться между непрерывной и дискретной реализациями блока при помощи параметра Sample time (-1 for inherited). Чтобы сконфигурировать интегратора на непрерывное время, установите свойство Sample time (-1 for inherited) на 0. Чтобы сконфигурировать интегратора на дискретное время, установите свойство Sample time (-1 for inherited) на положительное, ненулевое значение или на -1 наследование шага расчета из вышестоящего блока.

Блок SM ST2C содержит четыре основных компонента:

  • Компенсатор Тока изменяет измеренное напряжение контакта как функцию от тока контакта.

  • Преобразователь Измерения Напряжения моделирует динамику терминального преобразователя напряжения с помощью lowpass фильтра.

  • Компонент Элементы Управления Возбуждением сравнивает выход преобразователя напряжения с терминальным опорным напряжением, чтобы создать ошибку напряжения. Затем эта ошибка напряжения передается через регулятор напряжения для создания напряжения возбуждения.

  • Источник Степени моделирует источник степени для управляемого выпрямителя, когда он является независимым от напряжения контакта.

Эта схема показывает общую структуру системной модели ST2C возбуждения:

На схеме:

  • VT и IT являются измеренными контактным напряжением и током синхронной машины.

  • VC1 - токо-компенсируемое контактное напряжение.

  • VC - фильтрованное, компенсированное током напряжение контакта.

  • VREF - базовое напряжение клеммы.

  • VS - напряжение стабилизатора степени.

  • VB - напряжение возбуждающего поля.

  • EFD и IFD являются напряжением возбуждения и током, соответственно.

В следующих разделах подробно описывается каждая из основных частей блока.

Компенсатор тока и преобразователь измерения напряжения

Компенсатор тока моделируется как:

VC1=VT+ITRC2+XC2,

где:

  • RC - сопротивление компенсации нагрузки.

  • XC - реактивное сопротивление компенсации нагрузки.

Преобразователь измерения напряжения реализован как Low-Pass Filter блок с постоянными по времени TR. Дискретные и непрерывные реализации см. в документации для блока Low-Pass Filter.

Элементы управления возбуждением

Эта схема иллюстрирует общую структуру элементов управления возбуждением:

На схеме:

  • Подсистема Summation Point Logic моделирует точку суммирования входа местоположение для ограничителя сверхэксцитирования (OEL), ограничителя недискриминации (UEL), ограничителя тока статора (SCL) и степени переключателя (V_S) напряжения. Для получения дополнительной информации об использовании ограничителей с этим блоком, смотрите Полевые ограничители тока.

  • Подсистема Take-over Logic моделирует входное расположение точки захвата для напряжений OEL, UEL и SCL. Для получения дополнительной информации об использовании ограничителей с этим блоком, смотрите Полевые ограничители тока.

  • Подсистема PI моделирует ПИ-контроллер этих функций как структуру управления для автоматического регулятора напряжения и позволяет представлять модернизацию оборудования с современным цифровым контроллером. Минимальные и максимальные пределы насыщения против насыщения обмотки для блока VPImin и VPImax, соответственно.

  • Блок Low-Pass Filter моделирует основную динамику регулятора напряжения. Здесь KA - коэффициент усиления регулятора, а TA - основная временная константа регулятора. Минимальные и максимальные пределы насыщения против насыщения обмотки для блока VRmin и VRmax, соответственно.

  • Блок Filtered Derivative моделирует путь обратной связи скорости для стабилизации системы возбуждения. Здесь KF и TF являются константой усиления и времени этой системы, соответственно. Смотрите документацию по блоку Filtered Derivative для точных дискретных и непрерывных реализаций.

  • Блок Integrator управляет выходом возбудителя через управляемое насыщение. Параметр EFDmax представляет предел на напряжение возбудителя. Постоянная по времени TE связана с индуктивностью управляющих обмоток.

Ограничители Тока Поля

Можно использовать различные ограничители тока возбуждения, чтобы изменить выход регулятора напряжения в небезопасных условиях работы:

  • Используйте ограничитель перенапряжения, чтобы предотвратить перегрев обмотки возбуждения из-за чрезмерной потребности в токе возбуждения.

  • Используйте ограничитель недооценки, чтобы увеличить возбуждение поля, когда оно слишком низко, что рискует десинхронизацией.

  • Используйте ограничитель тока статора, чтобы предотвратить перегрев обмоток статора из-за сверхтоков.

Приложите выход любого из этих ограничителей в одной из следующих точек:

  • Точка суммирования как часть цикла обратной связи автоматического регулятора напряжения (AVR)

  • Точка принятия для переопределения обычного поведения AVR

Если вы используете ограничитель тока статора в точке суммирования, используйте одну входную VSCLsum. Если вы используете ограничитель тока статора в точке захвата, используйте и вход перенапряжения, и VSCLoel, и вход недискажения, VSCLuel.

Источник степени

Некоторые статические системы используют как источники тока, так и напряжения, чтобы сгенерировать источник степени.

Эта схема показывает модель источника степени возбудителя, использующего фазорную комбинацию терминального напряжения, VT и терминального тока, IT:

Порты

Вход

расширить все

Регулятор напряжения ссылки задать точку в относительных единицах представление в виде скаляра.

Типы данных: single | double

Вход от стабилизатора степени, в относительных единицах представления, задается как скаляр.

Типы данных: single | double

Терминальное напряжение, величина в относительных единицах представления, задается как скаляр.

Типы данных: single | double

Терминальная величина тока в представлении в относительных единицах, заданная как скаляр.

Типы данных: single | double

Вход от ограничителя сверхэксцитации, в представлении в относительных единицах, задается как скаляр.

Зависимости

  • Чтобы проигнорировать вход от ограничителя сверхразрушения, установите Alternate OEL input locations (V_OEL) равным Unused.

  • Чтобы использовать вход от ограничителя сверхразрушения в точке суммирования, установите Alternate OEL input locations (V_OEL) равным Summation point.

  • Чтобы использовать вход от ограничителя перенапряжения в точке захвата, установите Alternate OEL input locations (V_OEL) равным Take-over.

Типы данных: single | double

Вход от ограничителя недооценки в представлении в относительных единицах задан как скаляр.

Зависимости

  • Чтобы игнорировать вход от ограничителя недооценки, установите Alternate UEL input locations (V_UEL) равным Unused.

  • Чтобы использовать вход от ограничителя недооценки в точке суммирования, установите Alternate UEL input locations (V_UEL) равным Summation point.

  • Чтобы использовать вход от ограничителя недооценки в точке захвата, установите Alternate UEL input locations (V_UEL) равным Take-over.

Типы данных: single | double

Вход от ограничителя тока статора при использовании точки суммирования, в представлении в относительных единицах, заданном как скаляр.

Зависимости

  • Чтобы игнорировать вход от ограничителя тока статора, установите Alternate SCL input locations (V_SCL) равным Unused.

  • Чтобы использовать вход от ограничителя тока статора в точке суммирования, установите Alternate SCL input locations (V_SCL) равным Summation point.

Типы данных: single | double

Вход от ограничителя тока статора, который препятствует перерастанию поля при использовании точки захвата в представлении в относительных единицах, заданном как скаляр.

Зависимости

  • Чтобы игнорировать вход от ограничителя тока статора, установите Alternate SCL input locations (V_SCL) равным Unused.

  • Чтобы использовать вход от ограничителя тока статора в точке захвата, установите Alternate SCL input locations (V_SCL) равным Take-over.

Типы данных: single | double

Вход от ограничителя тока статора, который препятствует занижению поля при использовании точки захвата в представлении в относительных единицах, заданном как скаляр.

Зависимости

  • Чтобы игнорировать вход от ограничителя тока статора, установите Alternate SCL input locations (V_SCL) равным Unused.

  • Чтобы использовать вход от ограничителя тока статора в точке захвата, установите Alternate SCL input locations (V_SCL) равным Take-over.

Типы данных: single | double

Измеренный ток возбуждения в относительных единицах синхронной машины.

Типы данных: single | double

Выход

расширить все

Напряжение возбуждения в относительных единицах для применения к цепи возбуждения синхронной машины, возвращаемое в виде скаляра.

Типы данных: single | double

Параметры

расширить все

Общая информация

Начальное напряжение в относительных единицах для применения к цепи возбуждения синхронной машины.

Начальное напряжение в относительных единицах.

Начальный ток терминала в относительных единицах.

Время между последовательными выполнениями блоков. Во время выполнения блок производит выходы и, при необходимости, обновляет свое внутреннее состояние. Для получения дополнительной информации смотрите Что такой Шаг расчета? и задайте шаг расчета.

Для унаследованной операции в дискретном времени задайте -1. Для операции в дискретном времени задайте положительное целое число. Для непрерывной операции задайте 0.

Если этот блок находится в маскированной подсистеме или другой альтернативной подсистеме, которая позволяет переключаться между непрерывной операцией и дискретной операцией, продвигайте параметр шага расчета. Продвижение параметра шага расчета обеспечивает правильное переключение между непрерывной и дискретной реализациями блока. Для получения дополнительной информации см. Раздел «Увеличение параметра до маски».

Предварительное управление

Сопротивление, используемое в системе компенсации тока. Установите этот параметр и Reactance component of load compensation, X_C (pu) равными 0 для отключения компенсации тока.

Реактивное сопротивление, используемое в системе компенсации тока. Установите этот параметр и Resistive component of load compensation, R_C (pu) равными 0 для отключения компенсации тока.

Эквивалентная временная константа для фильтрации преобразователя напряжения.

Контроль

Пропорциональная составляющая, сопоставленный с блоком управления ПИ регулятора напряжения.

Интегральная составляющая, сопоставленный с блоком управления ПИ регулятора напряжения.

Максимальное выходное напряжение блока управления ПИ регулятора в относительных единицах.

Минимальное выходное напряжение блока управления ПИ регулятора в относительных единицах.

Коэффициент усиления, сопоставленный с регулятором напряжения.

Основная временная константа регулятора напряжения.

Коэффициент усиления блока обратной связи.

Скорость обратной связи блокирует постоянную времени.

Максимальный относительный выход напряжение регулятора.

Минимальное выходное напряжение регулятора в относительных единицах.

Входное расположение ограничителя перенапряжения.

Расположение на входе ограничителя недооценки.

Входное положение ограничителя тока статора:

  • Если вы выбираете Summation point, используйте V_SCLsum входной порт.

  • Если вы выбираете Take-over, используйте V_SCLoel и V_SCLuel входные порты.

Возбудитель

Загрузка выпрямителя, пропорциональный коммутирующему реактивному сопротивлению.

Пропорциональная константа для поля возбудителя.

Временная константа для поля возбудителя.

Максимальное значение напряжения возбуждения генератора в относительных единицах.

Коэффициент усиления напряжения в относительных единицах в схеме источника степени.

Коэффициент усиления тока в относительных единицах в схеме источника степени.

Реактивное сопротивление в относительных единицах в схеме источника степени.

Phase angle исходной схемы степени, в степени.

Максимальное значение напряжения возбудителя в относительных единицах.

Ссылки

[1] Рекомендуемая практика IEEE для системных моделей возбуждения для исследований устойчивости системы степеней. IEEE Std 421.5-2016. Piscataway, NJ: IEEE-SA, 2016.

Расширенные возможности

Генерация кода C/C + +
Сгенерируйте код C и C++ с помощью Coder™ Simulink ®

.

См. также

| |

Введенный в R2020a
Для просмотра документации необходимо авторизоваться на сайте