modelDiscriminationPlot

Постройте кривую ROC

Описание

пример

modelDiscriminationPlot(lgdModel,data) генерирует приемник кривую рабочей характеристики (ROC). modelDiscriminationPlot Поддержки сегментацию и сравнение с образцом модели.

пример

modelDiscriminationPlot(___,Name,Value) задает опции, использующие один или несколько аргументы пары "имя-значение" в дополнение к входным параметрам в предыдущем синтаксисе.

пример

h = modelDiscriminationPlot(ax,___,Name,Value) задает опции, использующие один или несколько аргументы пары "имя-значение" в дополнение к входным параметрам в предыдущем синтаксисе, и возвращает указатель на рисунок h.

Примеры

свернуть все

В этом примере показано, как использовать fitLGDModel для подгонки данных к Regression моделировать и затем использовать modelDiscriminationPlot для построения графика ROC.

Загрузка данных

Загрузите данные потерь по умолчанию.

load LGDData.mat
head(data)
ans=8×4 table
      LTV        Age         Type           LGD   
    _______    _______    ___________    _________

    0.89101    0.39716    residential     0.032659
    0.70176     2.0939    residential      0.43564
    0.72078     2.7948    residential    0.0064766
    0.37013      1.237    residential     0.007947
    0.36492     2.5818    residential            0
      0.796     1.5957    residential      0.14572
    0.60203     1.1599    residential     0.025688
    0.92005    0.50253    investment      0.063182

Данные о разделах

Разделите данные на обучающие и тестовые разделы.

rng('default'); % for reproducibility
NumObs = height(data);

c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

Создайте Regression ЛГД- Модели

Использование fitLGDModel для создания Regression модели с использованием обучающих данных.

lgdModel = fitLGDModel(data(TrainingInd,:),'regression');
disp(lgdModel)    
  Regression with properties:

    ResponseTransform: "logit"
    BoundaryTolerance: 1.0000e-05
              ModelID: "Regression"
          Description: ""
      UnderlyingModel: [1x1 classreg.regr.CompactLinearModel]
        PredictorVars: ["LTV"    "Age"    "Type"]
          ResponseVar: "LGD"

Отобразите базовую модель.

disp(lgdModel.UnderlyingModel)
Compact linear regression model:
    LGD_logit ~ 1 + LTV + Age + Type

Estimated Coefficients:
                       Estimate       SE        tStat       pValue  
                       ________    ________    _______    __________

    (Intercept)        -4.7549      0.36041    -13.193    3.0997e-38
    LTV                 2.8565      0.41777     6.8377    1.0531e-11
    Age                -1.5397     0.085716    -17.963    3.3172e-67
    Type_investment     1.4358       0.2475     5.8012     7.587e-09


Number of observations: 2093, Error degrees of freedom: 2089
Root Mean Squared Error: 4.24
R-squared: 0.206,  Adjusted R-Squared: 0.205
F-statistic vs. constant model: 181, p-value = 2.42e-104

Постройте график данных ROC

Использование modelDiscriminationPlot для построения графика ROC для тестовых данных набора.

modelDiscriminationPlot(lgdModel,data(TestInd,:))

Figure contains an axes. The axes with title ROC Regression, AUROC = 0.67897 contains an object of type line. This object represents Regression.

В этом примере показано, как использовать fitLGDModel для подгонки данных к Tobit моделировать и затем использовать modelDiscriminationPlot для построения графика ROC.

Загрузка данных

Загрузите данные потерь по умолчанию.

load LGDData.mat
head(data)
ans=8×4 table
      LTV        Age         Type           LGD   
    _______    _______    ___________    _________

    0.89101    0.39716    residential     0.032659
    0.70176     2.0939    residential      0.43564
    0.72078     2.7948    residential    0.0064766
    0.37013      1.237    residential     0.007947
    0.36492     2.5818    residential            0
      0.796     1.5957    residential      0.14572
    0.60203     1.1599    residential     0.025688
    0.92005    0.50253    investment      0.063182

Данные о разделах

Разделите данные на обучающие и тестовые разделы.

rng('default'); % for reproducibility
NumObs = height(data);

c = cvpartition(NumObs,'HoldOut',0.4);
TrainingInd = training(c);
TestInd = test(c);

Создайте модель LGD Тобита

Использование fitLGDModel для создания Tobit модели с использованием обучающих данных.

lgdModel = fitLGDModel(data(TrainingInd,:),'tobit');
disp(lgdModel)    
  Tobit with properties:

      CensoringSide: "both"
          LeftLimit: 0
         RightLimit: 1
            ModelID: "Tobit"
        Description: ""
    UnderlyingModel: [1x1 risk.internal.credit.TobitModel]
      PredictorVars: ["LTV"    "Age"    "Type"]
        ResponseVar: "LGD"

Отобразите базовую модель.

disp(lgdModel.UnderlyingModel)
Tobit regression model:
     LGD = max(0,min(Y*,1))
     Y* ~ 1 + LTV + Age + Type

Estimated coefficients:
                       Estimate        SE         tStat       pValue  
                       _________    _________    _______    __________

    (Intercept)         0.058257     0.027276     2.1358      0.032809
    LTV                  0.20126     0.031373      6.415    1.7363e-10
    Age                -0.095407    0.0072543    -13.152             0
    Type_investment      0.10208     0.018054     5.6542    1.7802e-08
    (Sigma)              0.29288     0.005704     51.346             0

Number of observations: 2093
Number of left-censored observations: 547
Number of uncensored observations: 1521
Number of right-censored observations: 25
Log-likelihood: -698.383

Постройте график данных ROC

Использование modelDiscriminationPlot для построения графика ROC для тестовых данных набора.

modelDiscriminationPlot(lgdModel,data(TestInd,:),"SegmentBy","Type","DiscretizeBy","median")

Figure contains an axes. The axes with title ROC Segmented by Type contains 2 objects of type line. These objects represent Tobit, residential, AUROC = 0.70101, Tobit, investment, AUROC = 0.73252.

Входные параметры

свернуть все

Потеря по умолчанию заданная модель, заданная как ранее созданная Regression или Tobit использование объекта fitLGDModel.

Типы данных: object

Данные, заданные как NumRows-by- NumCols таблица с предиктором и значениями отклика. Имена переменных и типы данных должны соответствовать базовой модели.

Типы данных: table

(Необязательно) Допустимый объект оси, заданный как ax объект, который создается с использованием axes. График будет создан в осях, заданных опциональным ax аргумент вместо в текущей системе координат (gca). Необязательный аргумент ax должен предшествовать любой комбинации входных аргументов.

Типы данных: object

Аргументы в виде пар имя-значение

Задайте необязательные разделенные разделенными запятой парами Name,Value аргументы. Name - имя аргумента и Value - соответствующее значение. Name должны находиться внутри кавычек. Можно задать несколько аргументов в виде пар имен и значений в любом порядке Name1,Value1,...,NameN,ValueN.

Пример: modelDiscriminationPlot(lgdModel,data(TestInd,:),'DataID','Testing','DiscretizeBy','median')

Идентификатор набора данных, заданный как разделенная разделенными запятой парами, состоящая из 'DataID' и вектор символов или строка. The DataID включено в выход для целей отчетности.

Типы данных: char | string

Метод дискретизации для LGD- data, заданная как разделенная разделенными запятой парами, состоящая из 'DiscretizeBy' и вектор символов или строка.

  • 'mean' - Дискретизированный ответ 1 если наблюдаемый LGD больше или равен среднему LGD, 0 в противном случае.

  • 'median' - Дискретизированный ответ 1 если наблюдаемый LGD больше или равен медианному LGD, 0 в противном случае.

  • 'positive' - Дискретизированный ответ 1 если наблюдаемый LGD положителен, 0 в противном случае (полное восстановление).

  • 'total' - Дискретизированный ответ 1 если наблюдаемый LGD больше или равен 1 (общая потеря), 0 в противном случае.

Типы данных: char | string

Имя столбца в data вход, не обязательно переменная модели, которая должна использоваться для сегментации набора данных, заданного как разделенная разделенными запятой парами, состоящая из 'SegmentBy' и вектор символов или строка. Для каждого сегмента выводится по одному AUROC, и соответствующие данные ROC для каждого сегмента возвращаются в необязательном выходе.

Типы данных: char | string

Значения LGD, предсказанные для data по образцу модели, заданной как разделенная запятой пара, состоящая из 'ReferenceID' и a NumRows-by- 1 числовой вектор. Кривая ROC нанесена на график для обоих lgdModel объект и образец модели.

Типы данных: double

Идентификатор образца модели, заданный как разделенная запятой пара, состоящий из 'ReferenceID' и вектор символов или строка. 'ReferenceID' используется на графике в целях отчетности.

Типы данных: char | string

Выходные аргументы

свернуть все

Фигура для объектов линии, возвращенный как объект-указатель.

Подробнее о

свернуть все

Моделируйте график дискриминации

The modelDiscriminationPlot графики функций кривой характеристики оператора приемника (ROC).

The modelDiscriminationPlot Функция также показывает область под кривой характеристики оператора приемника (AUROC), иногда называемую просто областью под кривой (AUC). Эта метрика находится между 0 и 1, и более высокие значения указывают на лучшую дискриминацию.

Числовое предсказание и двоичный ответ необходимы, чтобы построить график ROC и вычислить AUROC. Для моделей LGD предсказанный LGD используется непосредственно в качестве предсказания. Однако наблюдаемый LGD должен быть дискретизирован в двоичную переменную. По умолчанию наблюдаемым значениям LGD, больше или равным среднему наблюдаемому LGD, присваивается значение 1, и значениям ниже среднего присваивается значение 0. Этот дискретизированный ответ интерпретируется как «высокий LGD» по сравнению с «низким LGD». Кривая ROC и кривая AUROC измеряют, насколько хорошо предсказанный LGD разделяет наблюдения «высокого LGD» и «низкого LGD». Критерий дискретизации может быть изменен с помощью DiscretizeBy аргумент пары "имя-значение" для modelDiscriminationPlot.

Кривая ROC является параметрической кривой, которая строит график пропорции

  • Случаи с высоким LGD с предсказанным LGD, большим или равным t параметра или истинной положительной частотой (TPR)

  • Случаи с низким LGD с предсказанным LGD, большим или равным тому же t параметра, или ложноположительная частота (FPR)

Параметр t проходит через все наблюдаемые предсказанные значения LGD для данных. Если значение AUROC или данные кривой ROC необходимы программно, используйте modelDiscrimination функция. Для получения дополнительной информации о кривых ROC, см. «Кривая эффективность».

Ссылки

[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Аналитика кредитных рисков: методы измерения, приложения и примеры в SAS. Уайли, 2016.

[2] Беллини, Тициано. МСФО (IFRS) 9 и CECL «Моделирование и валидация кредитных рисков: практическое руководство с примерами, используемыми в R и SAS». Сан-Диего, Калифорния: Elsevier, 2019.

Введенный в R2021a
Для просмотра документации необходимо авторизоваться на сайте