Нереальная симуляция Engine для автоматизированного управления

Automated Driving Toolbox™ служит основой co-симуляции, которая моделирует ведущие алгоритмы в Simulink® и визуализирует их эффективность в виртуальной среде симуляции. Эта среда использует Нереальный Engine® от эпических игр®.

Блоки Simulink, связанные со средой симуляции, могут быть найдены в Automated Driving Toolbox> библиотека блоков Simulation 3D. Эти блоки обеспечивают способность к:

  • Сконфигурируйте сцены в среде симуляции.

  • Поместите и переместите транспортные средства в этих сценах.

  • Настройте камеру, радар, и лоцируйте датчики на транспортных средствах.

  • Симулируйте датчик выходные параметры на основе среды вокруг транспортного средства.

  • Получите достоверные данные для получения информации о глубине и семантической сегментации.

Этот инструмент симуляции обычно используется, чтобы добавить действительные данные при разработке, тестируя и проверяя эффективность автоматизированных ведущих алгоритмов. В сочетании с моделью транспортного средства можно использовать эти блоки, чтобы выполнить реалистические симуляции с обратной связью, которые охватывают целый автоматизированный ведущий стек от восприятия, чтобы управлять.

Для получения дополнительной информации о среде симуляции смотрите Как Нереальная Симуляция Engine для Автоматизированных Ведущих работ.

Нереальные блоки симуляции Engine

Получить доступ к библиотеке Automated Driving Toolbox> Simulation 3D, в MATLAB® командная строка, введите drivingsim3d.

Сцены

Чтобы сконфигурировать модель к co-simulate со средой симуляции, добавьте блок Simulation 3D Scene Configuration в модель. Используя этот блок, можно выбрать из набора предварительно созданных сцен, где можно протестировать и визуализировать ведущие алгоритмы. Можно также использовать этот блок, чтобы управлять положением солнца и погодными условиями в сцене. Следующее изображение от Виртуальной сцены Макити.

Тулбокс включает эти сцены.

СценаОписание
Стрэайт-Роуд

Прямой дорожный сегмент

Кервед-Роуд

Кривая, циклично выполненная дорога

Парковка

Пустая парковка

Двойное изменение маршрута

Стрэайт-Роуд с баррелями и дорожными знаками, которые настраиваются для выполнения двойного маневра изменения маршрута

Открытая поверхность

Плоский, черный тротуар появляется без дорожных объектов

Городской квартал США

Городской квартал с пересечениями, барьерами и светофором

Магистраль США

Магистраль с конусами, барьерами, светофором и дорожными знаками

Большая парковка

Парковка с припаркованными автомобилями, конусами, ограничениями и дорожными знаками

Виртуальный Макити

Городская среда, которая представляет открытую демонстрационную площадку Мичиганского университета (см. Тестовое Средство Макити); включает конусы, барьеры, животное, светофор и дорожные знаки

Если у вас есть Интерфейс Automated Driving Toolbox для Нереального Engine 4 пакета поддержки Проектов, то можно изменить эти сцены или создать новые единицы. Для получения дополнительной информации смотрите, Настраивают Нереальные Сцены Engine для Автоматизированного Управления.

Транспортные средства

Чтобы задать виртуальное транспортное средство в сцене, добавьте блок Simulation 3D Vehicle with Ground Following в свою модель. Используя этот блок, можно управлять перемещением транспортного средства путем предоставления этих X, Y, и значений рыскания, которые задают его положение и ориентацию на каждом временном шаге. Транспортное средство автоматически проходит земля.

Можно также задать цвет и тип транспортного средства. Тулбокс включает эти типы транспортного средства:

Датчики

Можно задать виртуальные датчики и присоединить их в различных позициях по транспортным средствам. Тулбокс включает их моделирование датчика и блоки Configuration.

БлокОписание
Simulation 3D CameraМодель камеры с линзой. Включает параметры для размера изображения, фокусного расстояния, искажения и скоса.
Simulation 3D Fisheye CameraFisheye-камера, которая может быть описана с помощью модели камеры Scaramuzza. Включает параметры для центра искажения, размера изображения и коэффициентов отображения.
Simulation 3D LidarСканирование модели датчика лидара. Включает параметры для области значений обнаружения, разрешения и полей зрения.
Simulation 3D Probabilistic RadarВероятностная радарная модель, которая возвращает список обнаружений. Включает параметры для радарной точности, радарного смещения, вероятности обнаружения и создания отчетов обнаружения. Это не симулирует радар на уровне распространения электромагнитной волны.
Simulation 3D Probabilistic Radar ConfigurationКонфигурирует радарные подписи для всех агентов, обнаруженных блоками Simulation 3D Probabilistic Radar в модели.
Simulation 3D Vision Detection GeneratorМодель камеры, которая возвращает список объекта и обнаружений контура маршрута. Включает параметры для моделирования точности обнаружения, шума измерения и внутренних параметров камеры.

Для получения дополнительной информации о выборе датчика смотрите, Выбирают Sensor for Unreal Engine Simulation.

Тестирование алгоритма и визуализация

Блоки симуляции Automated Driving Toolbox обеспечивают инструменты для тестирования и визуализации планирования пути, управления транспортным средством и алгоритмов восприятия.

Планирование пути и управление транспортным средством

Можно использовать Нереальную среду симуляции Engine, чтобы визуализировать движение транспортного средства в предварительно созданной сцене. Эта среда предоставляет вам способ анализировать эффективность алгоритмов управления транспортного средства и планирования пути. После разработки этих алгоритмов в Simulink можно использовать drivingsim3d библиотека, чтобы визуализировать движение транспортного средства в одной из предварительно созданных сцен.

Для примера планирования пути и визуализации алгоритма управления транспортного средства, смотрите, Визуализируют Автоматизированного Камердинера Парковки Используя Нереальную Симуляцию Engine.

Восприятие

Automated Driving Toolbox обеспечивает несколько блоков для подробной камеры, радара и моделирования датчика лидара. Путем монтирования этих датчиков на транспортных средствах в виртуальной среде можно сгенерировать синтетические данные о датчике или обнаружения датчика, чтобы проверить производительность моделей датчика против алгоритмов восприятия. Для примера генерации радарных обнаружений смотрите, Симулируют Датчики Видения и Радара в Нереальной Среде Engine.

Можно также вывести и визуализировать достоверные данные, чтобы подтвердить алгоритмы оценки глубины и обучить сети семантической сегментации. Для примера смотрите Глубину и Визуализацию Семантической Сегментации Используя Нереальную Симуляцию Engine.

Локализация

Разработка алгоритма локализации и оценка его эффективности в различных условиях являются сложной задачей. Одна из самых сложных задач получает основную истину. Несмотря на то, что можно получить основную истину с помощью дорогих инерционных систем навигации (INS) высокой точности, виртуальная симуляция является экономически эффективной альтернативой. Использование симуляции позволяет тестировать под множеством настроек датчика и сценариев. Это также включает итерацию быстрой разработки и обеспечивает точную основную истину. Поскольку пример разрабатывает и оценивает алгоритм локализации лидара с помощью синтетических данных о лидаре из Нереальной среды симуляции Engine, смотрите Локализацию Лидара с Нереальной Симуляцией Engine.

Системы с обратной связью

После того, как вы проектируете и тестируете систему восприятия в среде симуляции, можно использовать эту систему, чтобы управлять системой управления, которая на самом деле ведет транспортное средство. В этом случае, вместо того, чтобы вручную настроить траекторию, транспортное средство использует систему восприятия, чтобы управлять собой. Путем объединения восприятия и управления в систему с обратной связью в 3D среде симуляции, можно разработать и протестировать более комплексные алгоритмы, такие как хранение маршрута помогают и адаптивный круиз-контроль.

Для примера системы с обратной связью в Нереальной среде Engine смотрите, что Хайвей Лейн Следует.

Похожие темы