estimatePortReturn

Оцените, что среднее значение портфеля возвращается

Описание

пример

pret = estimatePortReturn(obj,pwgt) оценивает, что среднее значение портфеля возвращается (как прокси для портфеля возвращается) для Portfolio, PortfolioCVaR, или PortfolioMAD объекты. Для получения дополнительной информации на соответствующих рабочих процессах при использовании этих различных объектов, смотрите Рабочий процесс Объекта Портфеля, Рабочий процесс Объекта PortfolioCVaR и Рабочий процесс Объекта PortfolioMAD.

Примеры

свернуть все

Учитывая портфель p, используйте estimatePortReturn функционируйте, чтобы оценить, что среднее значение портфеля возвращается.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
      0.00408 0.0289 0.0204 0.0119;
      0.00192 0.0204 0.0576 0.0336;
      0 0.0119 0.0336 0.1225 ];
 
p = Portfolio;
p = setAssetMoments(p, m, C);
p = setDefaultConstraints(p);
pwgt = estimateFrontierLimits(p);
pret = estimatePortReturn(p, pwgt);
disp(pret)
    0.0590
    0.1800

Учитывая портфель p, используйте estimatePortReturn функционируйте, чтобы оценить, что среднее значение портфеля возвращается.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

rng(11);

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioCVaR;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.95);

pwgt = estimateFrontierLimits(p);
pret = estimatePortReturn(p, pwgt);
disp(pret)
    0.0050
    0.0154

Функциональный rng(seed) сбрасывает генератор случайных чисел, чтобы привести к зарегистрированным результатам. Не необходимо сбросить генератор случайных чисел, чтобы симулировать сценарии.

Учитывая портфель p, используйте estimatePortReturn функционируйте, чтобы оценить, что среднее значение портфеля возвращается.

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0; 
    0.00408 0.0289 0.0204 0.0119;
    0.00192 0.0204 0.0576 0.0336;
    0 0.0119 0.0336 0.1225 ];
m = m/12;
C = C/12;

rng(11);

AssetScenarios = mvnrnd(m, C, 20000);

p = PortfolioMAD;
p = setScenarios(p, AssetScenarios);
p = setDefaultConstraints(p);

pwgt = estimateFrontierLimits(p);
pret = estimatePortReturn(p, pwgt);
disp(pret)
    0.0048
    0.0154

Функциональный rng(seed) сбрасывает генератор случайных чисел, чтобы привести к зарегистрированным результатам. Не необходимо сбросить генератор случайных чисел, чтобы симулировать сценарии.

Входные параметры

свернуть все

Объект для портфеля, заданное использование Portfolio, PortfolioCVaR, или PortfolioMAD объект. Для получения дополнительной информации о создании объекта портфеля смотрите

Типы данных: object

Набор портфелей в виде NumAssets- NumPorts матрица, где NumAssets количество активов во вселенной и NumPorts количество портфелей в наборе портфелей.

Типы данных: double

Выходные аргументы

свернуть все

Оценки для средних значений портфеля возвращаются для каждого портфеля в pwgt, возвращенный как NumPorts вектор.

pret возвращен для Portfolio, PortfolioCVaR, или PortfolioMAD входной объект (obj).

Примечание

В зависимости от того, были ли затраты установлены, возврат портфеля является или грубым или сетевым портфелем, возвращается. Для получения информации об установке затрат смотрите setCosts.

Советы

Можно также использовать запись через точку, чтобы оценить, что среднее значение портфеля возвращается (как прокси для портфеля возвращается).

pret = obj.estimatePortReturn(pwgt);

Введенный в R2011a