NormalDistribution

Объект нормального распределения вероятностей

Описание

Объект NormalDistribution состоит из параметров, образцового описания и выборочных данных для нормального распределения вероятностей.

Нормальное распределение, иногда названное Распределением Гаусса, является семейством кривых 2D параметра. Обычным выравниванием для использования нормального распределения для моделирования является Центральная предельная теорема, которая утверждает (примерно), что сумма независимых выборок от любого распределения с конечным средним значением и отклонением сходится к нормальному распределению, когда объем выборки переходит к бесконечности.

Нормальное распределение использует следующие параметры.

ПараметрОписаниеПоддержка
mu (μ)Среднее значение<μ<
sigma (σ)Стандартное отклонениеσ0

Создание

Существует несколько способов создать объект распределения вероятностей NormalDistribution.

  • Создайте распределение с заданными значениями параметров с помощью makedist.

  • Соответствуйте распределению к данным с помощью fitdist.

  • В интерактивном режиме соответствуйте распределению к данным с помощью приложения Distribution Fitter.

Свойства

развернуть все

Параметры распределения

Среднее значение нормального распределения, заданного как скалярное значение.

Типы данных: single | double

Стандартное отклонение нормального распределения, заданного как неотрицательное скалярное значение.

Можно задать sigma, чтобы быть нулем, когда вы создаете объект при помощи makedist. Некоторые объектные функции поддерживают объект pd с нулевым стандартным отклонением. Например, random (pd) всегда возвращает mu и cdf, который (pd,x) возвращает или 0 или 1. Вывод 0, если x меньше, чем mu, и 1 в противном случае. mean, std и var возвращают среднее значение, стандартное отклонение и отклонение pd, соответственно.

Типы данных: single | double

Характеристики распределения

Это свойство доступно только для чтения.

Логический флаг для усеченного распределения, заданного как логическое значение. Если IsTruncated равняется 0, распределение не является усеченным. Если IsTruncated равняется 1, распределение является усеченным.

Типы данных: логический

Это свойство доступно только для чтения.

Количество параметров для распределения вероятностей, заданного как положительное целочисленное значение.

Типы данных: double

Это свойство доступно только для чтения.

Ковариационная матрица оценок параметра, заданных как p-by-p матрица, где p является количеством параметров в распределении. (i, j) элемент является ковариацией между оценками i th параметр и j th параметр. (i, i) элемент является предполагаемым отклонением i th параметр. Если параметр i фиксируется, а не оценивается путем подбора кривой распределению к данным, то (i, i) элементы ковариационной матрицы 0.

Типы данных: double

Это свойство доступно только для чтения.

Логический флаг для фиксированных параметров, заданных как массив логических значений. Если 0, соответствующий параметр в массиве ParameterNames не фиксируется. Если 1, соответствующий параметр в массиве ParameterNames фиксируется.

Типы данных: логический

Это свойство доступно только для чтения.

Значения параметра распределения, заданные как вектор.

Типы данных: single | double

Это свойство доступно только для чтения.

Интервал усечения для распределения вероятностей, заданного как вектор, содержащий более низкие и верхние контуры усечения.

Типы данных: single | double

Другие свойства объектов

Это свойство доступно только для чтения.

Имя распределения вероятностей, заданное как вектор символов.

Типы данных: char

Это свойство доступно только для чтения.

Данные используются для подбора кривой распределения, заданного как структура, содержащая следующее:

  • данные: Вектор данных используется для подбора кривой распределения.

  • cens: Цензурирование вектора, или пустой, если ни один.

  • freq: вектор Частоты, или пустой, если ни один.

Типы данных: struct

Это свойство доступно только для чтения.

Описания параметра распределения, заданные как массив ячеек из символьных векторов. Каждая ячейка содержит краткое описание одного параметра распределения.

Типы данных: char

Это свойство доступно только для чтения.

Имена параметра распределения, заданные как массив ячеек из символьных векторов.

Типы данных: char

Функции объекта

cdfКумулятивная функция распределения
icdfОбратная кумулятивная функция распределения
iqrМежквартильный размах
meanСреднее значение распределения вероятностей
medianМедиана распределения вероятностей
negloglikОтрицательный loglikelihood распределения вероятностей
paramciДоверительные интервалы для параметров распределения вероятностей
pdfФункция плотности вероятности
proflikПрофилируйте функцию правдоподобия для распределения вероятностей
randomСлучайные числа
stdСтандартное отклонение распределения вероятностей
truncateУсеченный объект распределения вероятностей
varОтклонение распределения вероятностей

Примеры

свернуть все

Создайте объект нормального распределения использование значений параметров по умолчанию.

pd = makedist('Normal')
pd = 
  NormalDistribution

  Normal distribution
       mu = 0
    sigma = 1

Создайте объект нормального распределения путем определения значений параметров.

pd = makedist('Normal','mu',75,'sigma',10)
pd = 
  NormalDistribution

  Normal distribution
       mu = 75
    sigma = 10

Вычислите межквартильный размах распределения.

r = iqr(pd)
r = 13.4898

Загрузите выборочные данные и создайте вектор, содержащий первый столбец студенческих данных о классе экзамена.

load examgrades
x = grades(:,1);

Создайте объект нормального распределения путем подбора кривой ему к данным.

pd = fitdist(x,'Normal')
pd = 
  NormalDistribution

  Normal distribution
       mu = 75.0083   [73.4321, 76.5846]
    sigma =  8.7202   [7.7391, 9.98843]

Интервалы рядом с оценками параметра составляют 95% доверительных интервалов для параметров распределения.

Введенный в R2013a

Для просмотра документации необходимо авторизоваться на сайте