Измененная Функция Бесселя второго вида для символьных выражений
besselk(nu,z)
besselk(
возвращает измененную Функцию Бесселя второго вида, K ν (z).nu
,z
)
Вычислите измененные Функции Бесселя второго вида для этих чисел. Поскольку эти числа не являются символьными объектами, вы получаете результаты с плавающей точкой.
[besselk(0, 5), besselk(-1, 2), besselk(1/3, 7/4),... besselk(1, 3/2 + 2*i)]
ans = 0.0037 + 0.0000i 0.1399 + 0.0000i 0.1594 + 0.0000i -0.1620 - 0.1066i
Вычислите измененные Функции Бесселя второго вида для чисел, преобразованных в символьные объекты. Для большинства символьных (точных) чисел besselk
отвечает на неразрешенные символьные звонки.
[besselk(sym(0), 5), besselk(sym(-1), 2),... besselk(1/3, sym(7/4)), besselk(sym(1), 3/2 + 2*i)]
ans = [ besselk(0, 5), besselk(1, 2), besselk(1/3, 7/4), besselk(1, 3/2 + 2i)]
Для символьных переменных и выражений, besselk
также отвечает на неразрешенные символьные звонки:
syms x y [besselk(x, y), besselk(1, x^2), besselk(2, x - y), besselk(x^2, x*y)]
ans = [ besselk(x, y), besselk(1, x^2), besselk(2, x - y), besselk(x^2, x*y)]
Если первый параметр является нечетным целым числом, умноженным на 1/2, besselk
переписывает Функции Бесселя с точки зрения элементарных функций:
syms x besselk(1/2, x)
ans = (2^(1/2)*pi^(1/2)*exp(-x))/(2*x^(1/2))
besselk(-1/2, x)
ans = (2^(1/2)*pi^(1/2)*exp(-x))/(2*x^(1/2))
besselk(-3/2, x)
ans = (2^(1/2)*pi^(1/2)*exp(-x)*(1/x + 1))/(2*x^(1/2))
besselk(5/2, x)
ans = (2^(1/2)*pi^(1/2)*exp(-x)*(3/x + 3/x^2 + 1))/(2*x^(1/2))
Решите это дифференциальное уравнение второго порядка. Решениями являются измененные Функции Бесселя первого и второго вида.
syms nu w(z) dsolve(z^2*diff(w, 2) + z*diff(w) -(z^2 + nu^2)*w == 0)
ans = C2*besseli(nu, z) + C3*besselk(nu, z)
Проверьте, что измененная Функция Бесселя второго вида является допустимым решением измененного дифференциального уравнения функции Бесселя:
syms nu z isAlways(z^2*diff(besselk(nu, z), z, 2) + z*diff(besselk(nu, z), z)... - (z^2 + nu^2)*besselk(nu, z) == 0)
ans = logical 1
Дифференцируйте выражения, включающие измененные Функции Бесселя второго вида:
syms x y diff(besselk(1, x)) diff(diff(besselk(0, x^2 + x*y -y^2), x), y)
ans = - besselk(1, x)/x - besselk(0, x) ans = (2*x + y)*(besselk(0, x^2 + x*y - y^2)*(x - 2*y) +... (besselk(1, x^2 + x*y - y^2)*(x - 2*y))/(x^2 + x*y - y^2)) -... besselk(1, x^2 + x*y - y^2)
Вызовите besselk
для матричного A
и значения 1/2. Результатом является матрица измененных Функций Бесселя besselk(1/2, A(i,j))
.
syms x A = [-1, pi; x, 0]; besselk(1/2, A)
ans = [ -(2^(1/2)*pi^(1/2)*exp(1)*1i)/2, (2^(1/2)*exp(-pi))/2] [ (2^(1/2)*pi^(1/2)*exp(-x))/(2*x^(1/2)), Inf]
Постройте измененные Функции Бесселя второго вида для .
syms x y fplot(besselk(0:3, x)) axis([0 4 0 4]) grid on ylabel('K_v(x)') legend('K_0','K_1','K_2','K_3', 'Location','Best') title('Modified Bessel functions of the second kind')
Вызов besselk
для номера, который не является символьным объектом, вызывает
функцию MATLAB® besselk
.
По крайней мере один входной параметр должен быть скаляром, или оба аргумента должны быть векторами или матрицами, одного размера. Если один входной параметр является скаляром, и другой является вектором или матрицей, besselk(nu,z)
расширяет скаляр в вектор или матрицу, одного размера в качестве другого аргумента со всеми элементами, равными тому скаляру.
[1] Olver, F. W. J. “Функции Бесселя Целочисленного Порядка”. Руководство Математических функций с Формулами, Графиками и Математическими Таблицами. (М. Абрамовиц и я. А. Стегун, редакторы). Нью-Йорк: Дувр, 1972.
[2] Antosiewicz, H. A. “Функции Бесселя Дробного Порядка”. Руководство Математических функций с Формулами, Графиками и Математическими Таблицами. (М. Абрамовиц и я. А. Стегун, редакторы). Нью-Йорк: Дувр, 1972.