exponenta event banner

Постобработка результатов для настройки торгуемых портфелей

После получения эффективных портфелей или оценок ожидаемых портфельных рисков и доходности используйте результаты, чтобы настроить сделки для перехода к эффективному портфелю. Сведения о рабочем процессе при использовании PortfolioCVaR см. раздел Рабочий процесс объекта CCVaR.

Настройка торгуемых портфелей

Предположим, что вы настроили задачу оптимизации портфеля и получили портфели на эффективной границе. Используйте dataset объект из Toolbox™ Статистика и машинное обучение, чтобы сформировать блоттер, который перечисляет ваши портфели с именами для каждого актива. Например, предположим, что требуется получить пять портфелей по эффективной границе. Можно настроить блоттер с весами, умноженными на 100, для просмотра соотнесений для каждого портфеля:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = PortfolioCVaR;
p = setAssetList(p, 'Bonds','Large-Cap Equities','Small-Cap Equities','Emerging Equities');
p = setInitPort(p, pwgt0);
p = simulateNormalScenariosByMoments(p, m, C, 20000);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.9);

pwgt = estimateFrontier(p, 5);

pnames = cell(1,5);
for i = 1:5
pnames{i} = sprintf('Port%d',i);
end

Blotter = dataset([{100*pwgt},pnames],'obsnames',p.AssetList);
display(Blotter)
Blotter = 

                          Port1     Port2     Port3     Port4     Port5     
    Bonds                  78.84    43.688    8.3448         0    1.2501e-12
    Large-Cap Equities    9.3338    29.131    48.467    23.602    9.4219e-13
    Small-Cap Equities    4.8843    8.1284    12.419    16.357     8.281e-14
    Emerging Equities     6.9419    19.053    30.769    60.041           100

Примечание

Результаты могут отличаться от этого результата из-за моделирования сценариев.

Этот результат указывает на то, что вы будете инвестировать в основном в облигации с минимально-рисковым/минимально-доходным концом эффективной границы (Port1), и что вы будете полностью инвестировать в формирующийся акционерный капитал в конце эффективной границы с максимальным риском/максимальной отдачей (Port5). Вы можете также выбрать конкретный эффективный портфель, например, предположить, что хотите портфель с 15%-м риском, и Вы добавляете продукцию весов покупки и продажи, полученную из функций «estimateFrontier», чтобы настроить торговую промокательную бумагу:

m = [ 0.05; 0.1; 0.12; 0.18 ];
C = [ 0.0064 0.00408 0.00192 0;
0.00408 0.0289 0.0204 0.0119;
0.00192 0.0204 0.0576 0.0336;
0 0.0119 0.0336 0.1225 ];

pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ];

p = PortfolioCVaR;
p = setAssetList(p, 'Bonds','Large-Cap Equities','Small-Cap Equities','Emerging Equities');

p = setInitPort(p, pwgt0);
p = simulateNormalScenariosByMoments(p, m, C, 20000);
p = setDefaultConstraints(p);
p = setProbabilityLevel(p, 0.9);

[pwgt, pbuy, psell] = estimateFrontierByRisk(p, 0.15);

Blotter = dataset([{100*[pwgt0, pwgt, pbuy, psell]}, ...
{'Initial','Weight', 'Purchases','Sales'}],'obsnames',p.AssetList);
display(Blotter)
Blotter = 

                          Initial    Weight    Purchases    Sales 
    Bonds                 30         15.036         0       14.964
    Large-Cap Equities    30         45.357    15.357            0
    Small-Cap Equities    20         12.102         0       7.8982
    Emerging Equities     10         27.505    17.505            0
Если у вас есть цены на каждое основное средство (в этом примере они могут быть ETF), добавьте их в блоттер, а затем используйте инструменты dataset объект получения акций и акций, подлежащих торгу.

См. также

| |

Связанные примеры

Подробнее

Внешние веб-сайты