exponenta event banner

optSensByMertonNI

Цена опциона и чувствительность по Merton76 модели с использованием числовой интеграции

Описание

пример

PriceSens = optSensByMertonNI(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,Sigma,MeanJ,JumpVol,JumpFreq) вычисляет цену и чувствительность ванильных европейских опционов по Merton76 модели, используя численную интеграцию.

пример

PriceSens = optSensByMertonNI(___,Name,Value) добавляет необязательные аргументы пары имя-значение.

Примеры

свернуть все

optSensByMertonNI использует численную интеграцию для вычисления чувствительности опций и последующего вывода на печать поверхностей чувствительности опций.

Определение переменных опций и параметров модели Merton76

AssetPrice = 80;
Rate = 0.03;
DividendYield = 0.02;
OptSpec = 'call';

Sigma = 0.16;
MeanJ = 0.02;
JumpVol = 0.08;
JumpFreq = 2;

Вычисление чувствительности опции для одиночного удара

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = 80; 

Delta = optSensByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ...
    'OutSpec', "delta")
Delta = 0.5283

Вычисление чувствительности опций для вектора ударов

Strike входным может быть вектор.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = (76:2:84)';

Delta = optSensByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ...
    'OutSpec', "delta")
Delta = 5×1

    0.6727
    0.6013
    0.5283
    0.4565
    0.3883

Вычисление чувствительности опций для вектора ударов и вектора дат одинаковой длины

Используйте Strike ввод для указания ударов. Также, Maturity ввод может быть вектором, но он должен соответствовать длине Strike вектор, если ExpandOutput аргумент пары имя-значение не установлен в значение "true".

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, [12 18 24 30 36]); % Five maturities
Strike = [76 78 80 82 84]'; % Five strikes

Delta = optSensByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ...
    'OutSpec', "delta")
Delta = 5×1

    0.6419
    0.5907
    0.5565
    0.5311
    0.5110

    % Five values in vector output

Разверните окно «Вывод поверхности»

Установите ExpandOutput аргумент пары имя-значение для "true" для расширения выходных данных в NStrikesоколо-NMaturities матрица. В этом случае это квадратная матрица.

Delta = optSensByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ...
    'OutSpec', "delta", 'ExpandOutput', true) % (5 x 5) matrix output
Delta = 5×5

    0.6419    0.6305    0.6245    0.6204    0.6173
    0.5922    0.5907    0.5905    0.5905    0.5905
    0.5422    0.5507    0.5565    0.5607    0.5637
    0.4927    0.5112    0.5229    0.5311    0.5372
    0.4447    0.4725    0.4898    0.5020    0.5110

Вычисление чувствительности опций для вектора ударов и вектора дат различной длины

Когда ExpandOutput является "true", NStrikes не обязательно соответствовать NMaturities. То есть выход NStrikesоколо-NMaturities матрица может быть прямоугольной.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*(0.5:0.5:3)'); % Six maturities
Strike = (76:2:84)'; % Five strikes

Delta = optSensByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ...
    'OutSpec', "delta", 'ExpandOutput', true)  % (5 x 6) matrix output
Delta = 5×6

    0.6727    0.6419    0.6305    0.6245    0.6204    0.6173
    0.6013    0.5922    0.5907    0.5905    0.5905    0.5905
    0.5283    0.5422    0.5507    0.5565    0.5607    0.5637
    0.4565    0.4927    0.5112    0.5229    0.5311    0.5372
    0.3883    0.4447    0.4725    0.4898    0.5020    0.5110

Расчет чувствительности опционов для вектора ударов и вектора цен на активы

Когда ExpandOutput является "true", выходной сигнал также может быть NStrikesоколо-NAssetPrices прямоугольная матрица путем принятия вектора цен активов.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12); % Single maturity
ManyAssetPrices = [70 75 80 85]; % Four asset prices
Strike = (76:2:84)'; % Five strikes

Delta = optSensByMertonNI(Rate, ManyAssetPrices, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ...
    'OutSpec', "delta", 'ExpandOutput', true) % (5 x 4) matrix output
Delta = 5×4

    0.3796    0.5157    0.6419    0.7472
    0.3315    0.4637    0.5922    0.7043
    0.2874    0.4137    0.5422    0.6592
    0.2474    0.3664    0.4927    0.6128
    0.2117    0.3224    0.4447    0.5657

Поверхности чувствительности опций печати

Strike и Maturity входами могут быть векторы. Набор ExpandOutput кому "true" для вывода поверхностей в виде NStrikesоколо-NMaturities матрицы.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*[1/12 0.25 (0.5:0.5:3)]');
Times = yearfrac(Settle, Maturity);
Strike = (2:2:200)';

[Delta, Gamma, Rho, Theta, Vega] = optSensByMertonNI(...
    Rate, AssetPrice,Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ...
    'OutSpec', ["delta", "gamma", "rho", "theta", "vega"], ...
    'ExpandOutput', true);

[X,Y] = meshgrid(Times,Strike);

figure;
surf(X,Y,Delta);
title('Delta');
xlabel('Years to Option Expiry');
ylabel('Strike');
view(-112,34);
xlim([0 Times(end)]);

Figure contains an axes. The axes with title Delta contains an object of type surface.

figure;
surf(X,Y,Gamma)
title('Gamma')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);

Figure contains an axes. The axes with title Gamma contains an object of type surface.

figure;
surf(X,Y,Rho)
title('Rho')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);

Figure contains an axes. The axes with title Rho contains an object of type surface.

figure;
surf(X,Y,Theta)
title('Theta')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);

Figure contains an axes. The axes with title Theta contains an object of type surface.

figure;
surf(X,Y,Vega)
title('Vega')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);

Figure contains an axes. The axes with title Vega contains an object of type surface.

Входные аргументы

свернуть все

Непрерывно складываемая безрисковая процентная ставка, заданная как скалярное десятичное значение.

Типы данных: double

Текущая базовая цена актива, указанная как числовое значение с использованием скаляра или NINSTоколо-1 или NColumnsоколо-1 вектор.

Дополнительные сведения о соответствующих размерах для AssetPrice, см. аргумент пара имя-значение ExpandOutput.

Типы данных: double

Дата расчета опциона, указанная как NINSTоколо-1 или NColumnsоколо-1 вектор с использованием серийных номеров дат, векторов символов даты, массивов даты и времени или строковых массивов. Settle дата должна быть до Maturity дата.

Дополнительные сведения о соответствующих размерах для Settle, см. аргумент пара имя-значение ExpandOutput.

Типы данных: double | char | datetime | string

Дата погашения опциона, указанная как NINSTоколо-1 или NColumnsоколо-1 вектор с использованием серийных номеров дат, векторов символов даты, массивов даты и времени или строковых массивов.

Дополнительные сведения о соответствующих размерах для Maturity, см. аргумент пара имя-значение ExpandOutput.

Типы данных: double | char | datetime | string

Определение опции, указанной как NINSTоколо-1 или NColumnsоколо-1 вектор с использованием массива ячеек из символьных векторов или строковых массивов со значениями 'call' или 'put'.

Дополнительные сведения о соответствующих размерах для OptSpec, см. аргумент пара имя-значение ExpandOutput.

Типы данных: cell | string

Цена страйка опциона, указанная как NINSTоколо-1, NRowsоколо-1, NRowsоколо-NColumns вектор ударных цен.

Дополнительные сведения о соответствующих размерах для Strike, см. аргумент пара имя-значение ExpandOutput.

Типы данных: double

Волатильность недоделанного актива, определяемая как скалярное числовое значение.

Типы данных: double

Среднее значение случайного процентного размера перехода (J), указанное как скалярное десятичное значение, где log(1 + J) обычно распределяется со средним (log(1+MeanJ)-0.5*JumpVol^ 2) и стандартное отклонениеJumpVol.

Типы данных: double

Стандартное отклонение log(1 + J) гдеJ - случайный размер перехода в процентах, заданный как скалярное десятичное значение.

Типы данных: double

Годовая частота процесса перехода Пуассона, заданная как скалярное числовое значение.

Типы данных: double

Аргументы пары «имя-значение»

Укажите дополнительные пары, разделенные запятыми Name,Value аргументы. Name является именем аргумента и Value - соответствующее значение. Name должен отображаться внутри кавычек. Можно указать несколько аргументов пары имен и значений в любом порядке как Name1,Value1,...,NameN,ValueN.

Пример: Price = optSensByMertonNI(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,Sigma,MeanJ,JumpVol,JumpFreq,'Basis',7)

Количество дней прибора, указанное как пара, разделенная запятыми, состоящая из 'Basis' и скаляр, использующий поддерживаемое значение:

  • 0 = факт/факт

  • 1 = 30/360 (SIA)

  • 2 = фактически/360

  • 3 = факт/365

  • 4 = 30/360 (PSA)

  • 5 = 30/360 (ISDA)

  • 6 = 30/360 (европейский)

  • 7 = факт/365 (японский)

  • 8 = факт/факт (ICMA)

  • 9 = факт/360 (ICMA)

  • 10 = факт/365 (ICMA)

  • 11 = 30/360E (ICMA)

  • 12 = факт/365 (ISDA)

  • 13 = BUS/252

Дополнительные сведения см. в разделе Базис.

Типы данных: double

Постоянно смешанная базовая доходность активов, указанная как пара, разделенная запятыми, состоящая из 'DividendYield' и скалярное числовое значение.

Типы данных: double

Определите выходы, указанные как разделенная запятыми пара, состоящая из 'OutSpec' и NOUTоколо-1 или 1около-NOUT строковый массив или массив ячеек символьных векторов с поддерживаемыми значениями.

Примечание

"vega" - чувствительность по отношению к исходной волатильности sqrt (V0).

Пример: OutSpec = ["price","delta","gamma","vega","rho","theta"]

Типы данных: string | cell

Абсолютный допуск ошибки для числового интегрирования, определяемый как разделенная запятыми пара, состоящая из 'AbsTol' и скалярное числовое значение.

Типы данных: double

Относительный допуск ошибки для числового интегрирования, определяемый как разделенная запятыми пара, состоящая из 'RelTol' и скалярное числовое значение.

Типы данных: double

Диапазон численного интегрирования, используемый для аппроксимации непрерывного интеграла [0 Inf], указанная как пара, разделенная запятыми, состоящая из 'IntegrationRange' и 1около-2 вектор, представляющий [LowerLimit UpperLimit].

Типы данных: double

Структура для вычисления цен и чувствительности опций с использованием числовой интеграции моделей, определяемая как пара, разделенная запятыми, состоящая из 'Framework' и скалярную строку или символьный вектор со следующими значениями:

  • "heston1993" или 'heston1993' - Метод, используемый в Хестоне (1993)

  • "lewis2001" или 'lewis2001' - Метод, используемый в Льюисе (2001)

Типы данных: char | string

Флаг для расширения выходных данных, указанный как разделенная запятыми пара, состоящая из 'ExpandOutput' и логическое:

  • true - если true, выходы: NRowsоколо- NColumns матрицы. NRows - количество ударов для каждого столбца, которое определяется Strike вход. Например, Strike может быть NRowsоколо-1 вектор или NRowsоколо-NColumns матрица. NColumns определяется размерами AssetPrice, Settle, Maturity, и OptSpec, которые все должны быть скалярными или NColumnsоколо-1 векторы.

  • false - если false, выходы: NINSTоколо-1 векторы. Кроме того, входные данные Strike, AssetPrice, Settle, Maturity, и OptSpec все должны быть скалярными или NINSTоколо-1 векторы.

Типы данных: logical

Выходные аргументы

свернуть все

Цены опционов или чувствительности, возвращенные как NINSTоколо-1, или NRowsоколо-NColumns, в зависимости от ExpandOutput. Аргумент пары имя-значение OutSpec определяет типы и порядок выходов.

Подробнее

свернуть все

Вариант ванили

Вариант ванили - это категория вариантов, включающая только самые стандартные компоненты.

Вариант ванили имеет срок годности и простую цену страйка. Варианты в американском и европейском стиле классифицируются как варианты ванили.

Окупаемость опциона на ваниль выглядит следующим образом:

  • Для вызова: max (St K, 0)

  • Для put: max (K St, 0)

где:

St - цена базового актива в момент времени t.

K - цена удара.

Дополнительные сведения см. в разделе Параметр ванили.

Диффузионная модель Merton Jump

Модель диффузии прыжков Мертона (Merton (1976)) является другим расширением модели Блэка-Шоулза, где внезапные движения цен активов (как вверх, так и вниз) моделируются путем добавления параметров диффузии скачков с процессом Пуассона.

Стохастическое дифференциальное уравнение:

dSt = (r q λ pmc j) Stdt + startStdWt + JStdPtprob (dPt = 1) = λ pdt

где

r - непрерывная безрисковая ставка.

q - непрерывный дивидендный выход.

Wt - процесс Вайнера.

J - случайный процентный размер скачка, обусловленный происходящим скачком, где ln(1 + J) обычно распределяется со средним значением ln (1 + мкJ) − δ22 и стандартным отклонением δ, а (1 + J) имеет логнормальное распределение:

1 (1 + J) δ2āexp {[ln (1 + J) (ln (1 + мкJ) − δ22] 2δ22}

мкДж представляет собой среднее значение J для (мкДж > -1).

δ - стандартное отклонение ln(1 + J) для (δ≥ 0).

ƛp - годовая частота (интенсивность) процесса Пуассона Ptfor (ƛp ≥ 0).

λ - волатильность цены актива для (λ > 0).

Характеристическая функция fMerton76j (start) для j = 1 (измерение цен на активы) и j = 2 (измерение, нейтральное по отношению к риску):

fMerton76j=fBSjexp (λpτ (1 +μj) mj+12 [(1 +μj) iϕeδ2 (mjiϕ + (iϕ) 22) −1]  −λpτμjiϕ) , где для j=1,2:fBS1 (ϕ) =fBS2 (ϕ−i) fBS2 (−i) fBS2 (ϕ) =exp ([lnSt + (r−q−σ22) τ]−ϕ2σ22τ) m1=12, m2 =−12

где

start- переменная характеристической функции.

start- время до наступления зрелости (start= T- t).

i - единичное мнимое число (i2 = -1).

Метод численной интеграции в рамках Heston (1993)

Численное интегрирование используется для оценки непрерывного интеграла для обратного преобразования Фурье.

Метод численного интегрирования в рамках Heston (1993) основан на следующих выражениях:

Вызов (K) = Ste qτP1 Ke rτP2Put (K) = Вызов (K) +Ke−rτ−Ste−qτPj=12+1π∫0∞Re[e−iϕln (K) fj (

где

r - непрерывная безрисковая ставка.

q - непрерывный дивидендный выход.

St - цена актива в момент времени t.

К - это удар.

start- время до зрелости (start= T-t).

Call (K) - цена вызова при ударе K.

Пут (К) - цена пут при ударе К.

i - единичное мнимое число (i2 = -1).

start- переменная характеристической функции.

fj (start) является характеристической функцией для Pj (j = 1,2).

P1 - вероятность St > K при измерении цены актива для модели.

P2 - вероятность St > K в рамках нейтральной по риску меры для модели.

Где j = 1,2 таким образом, что f1 (в) и f2 (в) являются характерными функциями для вероятностей P1 и P2 соответственно.

Эта структура выбрана со значением по умолчанию “Heston1993” для Framework аргумент пары имя-значение.

Метод числовой интеграции в рамках Lewis (2001) Framework

Численное интегрирование используется для оценки непрерывного интеграла для обратного преобразования Фурье.

Метод численного интегрирования в рамках Lewis (2001) основан на следующих выражениях:

Вызов (k) =Ste−qτ−Ke−τtπ∫0∞Re[K−iuf2 (start= (u i2)) 1u2 + 14] duPut (K) = вызов (K) = Ke −

где

r - непрерывная безрисковая ставка.

q - непрерывный дивидендный выход.

St - цена актива в момент времени t.

К - это удар.

start- время до зрелости (start= T-t).

Call (K) - цена вызова при ударе K.

Пут (К) - цена пут при ударе К.

i - единичное мнимое число (i2 = -1).

start- переменная характеристической функции.

u - переменная характеристической функции для интегрирования, где start= = (u i2).

f2 (start) является характеристической функцией для P2.

P2 - вероятность St > K в рамках нейтральной по риску меры для модели.

Эта структура выбирается со значением “Lewis2001” для Framework аргумент пары имя-значение.

Ссылки

[1] Бейтс, Д. С. «Скачки и стохастическая волатильность: процессы обменного курса, неявные в опционах Deutsche Mark». Обзор финансовых исследований. Том 9. № 1. 1996.

[2] Конт, Р. и П. Танков. Финансовое моделирование с процессами перехода. Chapman & Hall/CRC Press, 2004.

[3] Хестон, С. Л. «Решение в закрытой форме для опционов со стохастической волатильностью с приложениями к облигациям и валютным опционам». Обзор финансовых исследований. Том 6. № 2. 1993.

[4] Льюис, А. Л. «Простая опционная формула для общего скачка-диффузии и других экспоненциальных процессов леви». Enquision Financial Systems and OptionCity.net, 2001.

[5] Мертон, Р. «Ценообразование опциона, когда возврат базового запаса является прерывистым». Журнал финансовой экономики. Том 3. 1976.

Представлен в R2018a